Proteomic mapping associated with clinical and sociodemographic parameters of breast cancer in Senegal
Keywords:
Biomarkers, Breast cancers, clinical sociodemographic, proteomics, SenegalAbstract
Breast cancer refers to a malignant tumour resulting from the uncontrolled proliferation of epithelial cells in the mammary gland. It is the leading cause of cancer in women. In Senegal, regional disparities remain marked by differences in access to screening, diagnosis, and treatment. Proteomics provides a direct reflection of the functional state of tissues and biological pathways and captures the functional effects of molecular alterations. In order to better understand the relationship between the pathogenesis of breast cancer and the existence of potential biomarkers based on each underlying clinical and sociodemographic parameter, this study performs correlation analyses. Proteins were extracted from healthy and cancerous tissues. The analytical workflow showed 30 proteins that were statistically deregulated between those under and over 50 years of age, 5 proteins between married and unmarried patients, 37 proteins between women with fewer than 7 children and those with more than 7 children, six proteins between the early stage and the locally advanced stage, and treatment response showed that 17 proteins were statistically deregulated. The results of this study have identified numerous proteins with high prognostic value associated with robust statistics and significantly overexpressed according to the parameters.
Downloads
References
Al-Amrani, S., Al-Jabri, Z., Al-Zaabi, A., Alshekaili, J., & Al-Khabori, M. (2021). Proteomics: Concepts and applications in human medicine. World journal of biological chemistry, 12(5), 57-69. DOI: https://doi.org/10.4331/wjbc.v12.i5.57
AlDoughaim, M., AlSuhebany, N., AlZahrani, M., AlQahtani, T., AlGhamdi, S., Badreldin, H., & Al Alshaykh, H. (2024). Cancer biomarkers and precision oncology: A review of recent trends and innovations. Clinical Medicine Insights: Oncology, 18, 11795549241298541. DOI: https://doi.org/10.1177/11795549241298541
Bedore, S., van der Eerden, J., Boghani, F., Patel, S. J., Yassin, S., Aguilar, K., & Lokeshwar, V. B. (2024). Protein-Based Predictive Biomarkers to Personalize Neoadjuvant Therapy for Bladder Cancer—A Systematic Review of the Current Status. International journal of molecular sciences, 25(18), 9899. DOI: https://doi.org/10.3390/ijms25189899
Biondini, M., Kiepas, A., El-Houjeiri, L., Annis, M. G., Hsu, B. E., Fortier, A. M., ... & Siegel, P. M. (2022). HSP90 inhibitors induce GPNMB cell-surface expression by modulating lysosomal positioning and sensitize breast cancer cells to glembatumumab vedotin. Oncogene, 41(12), 1701-1717. DOI: https://doi.org/10.1038/s41388-022-02206-z
Castaldi, M., Smiley, A., Kechejian, K., Butler, J., & Latifi, R. (2022). Disparate access to breast cancer screening and treatment. BMC Women's Health, 22(1), 249. DOI: https://doi.org/10.1186/s12905-022-01793-z
Chen, W., Desert, R., Ge, X., Han, H., Song, Z., Das, S., ... & Nieto, N. (2021). The matrisome genes from hepatitis B–related hepatocellular carcinoma unveiled. Hepatology Communications, 5(9), 1571-1585. DOI: https://doi.org/10.1002/hep4.1741
Choi, J., Kwak, Y., Park, M., Jo, J. Y., Kang, J. H., Myeong-Cherl, K., ... & Cho, S. J. (2025). Cancer-associated fibroblast-derived fibulin-5 promotes epithelial–mesenchymal transition in diffuse-type gastric cancer via cAMP response element-binding protein pathway, showing poor prognosis. Experimental & Molecular Medicine, 1-14. DOI: https://doi.org/10.1038/s12276-025-01447-8
Dalman, M. R., Deeter, A., Nimishakavi, G., & Duan, Z. H. (2012). Fold change and p-value cutoffs significantly alter microarray interpretations. BMC bioinformatics, 13(Suppl 2), S11. DOI: https://doi.org/10.1186/1471-2105-13-S2-S11
Durślewicz, J., Klimaszewska-Wiśniewska, A., Jóźwicki, J., Antosik, P., Kozerawski, K., Grzanka, D., & Braun, M. (2022). Prognostic significance of MATR3 in stage I and II non-small cell lung cancer patients. Journal of Cancer Research and Clinical Oncology, 148(12), 3313-3322. DOI: https://doi.org/10.1007/s00432-022-04097-9
Ferlay, J., Colombet, M., Soerjomataram, I., Parkin, D. M., Piñeros, M., Znaor, A., & Bray, F. (2021). Cancer statistics for the year 2020: An overview. International journal of cancer, 149(4), 778-789. DOI: https://doi.org/10.1002/ijc.33588
Heo, Y. J., Hwa, C., Lee, G. H., Park, J. M., & An, J. Y. (2021). Integrative multi-omics approaches in cancer research: from biological networks to clinical subtypes. Molecules and cells, 44(7), 433-443. https://doi.org/10.14348/molcells.2021.0042 DOI: https://doi.org/10.14348/molcells.2021.0042
Hsieh, C. C., Wu, Y. H., Chen, Y. L., Wang, C. I., Li, C. J., Liu, I. H., ... & Chen, C. Y. (2025). SERPING1 Reduces Cell Migration via ERK‐MMP2‐MMP‐9 Cascade in Sorafenib‐Resistant Hepatocellular Carcinoma. Environmental toxicology, 40(2), 318-327. DOI: https://doi.org/10.1002/tox.24434
Huang, J., Tang, Y., Zou, X., Lu, Y., She, S., Zhang, W., ... & Hu, H. (2020). Identification of the fatty acid synthase interaction network via iTRAQ-based proteomics indicates the potential molecular mechanisms of liver cancer metastasis. Cancer Cell International, 20(1), 332. DOI: https://doi.org/10.1186/s12935-020-01409-2
Huang, X., Tao, Y., Gao, J., Zhou, X., Tang, S., Deng, C., ... & Li, T. (2020). UBC9 coordinates inflammation affecting development of bladder cancer. Scientific Reports, 10(1), 20670. DOI: https://doi.org/10.1038/s41598-020-77623-9
Karanis, M., Koksal, H., Ates, E., & Dogru, O. (2019). Clinical importance of fibulin-5 immunohistochemical staining in breast lesions. Polish Journal of Pathology, 70(4), 259-263. DOI: https://doi.org/10.5114/pjp.2019.93127
Khan, S. A., Sun, Z., Dahlberg, S., Malhotra, J., Keresztes, R., Ikpeazu, C., ... & Pillai, R. (2021). Efficacy and safety of glembatumumab vedotin in patients with advanced or metastatic squamous cell carcinoma of the lung (PrECOG 0504). JTO clinical and research reports, 2(5), 100166. https://doi.org/10.1016/j.jtocrr.2021.100166 DOI: https://doi.org/10.1016/j.jtocrr.2021.100166
Kidd, B. A., Readhead, B. P., Eden, C., Parekh, S., & Dudley, J. T. (2015). Integrative network modeling approaches to personalized cancer medicine. Personalized medicine, 12(3), 245-257. DOI: https://doi.org/10.2217/pme.14.87
Lazaratos, A. M., Annis, M. G., & Siegel, P. M. (2022). GPNMB: a potent inducer of immunosuppression in cancer. Oncogene, 41(41), 4573-4590. DOI: https://doi.org/10.1038/s41388-022-02443-2
Li, F., Dai, Y., Tang, C., Peng, L., Huang, H., Chen, Y., ... & Lin, Y. (2025). Elevated UBC9 expression and its oncogenic role in colorectal cancer progression and chemoresistance. Scientific Reports, 15(1), 9123. DOI: https://doi.org/10.1038/s41598-025-93868-8
Lin, L., Chen, S., Wang, H., Gao, B., Kallakury, B., Bhuvaneshwar, K., ... & He, A. R. (2021). SPTBN1 inhibits inflammatory responses and hepatocarcinogenesis via the stabilization of SOCS1 and downregulation of p65 in hepatocellular carcinoma. Theranostics, 11(9), 4232. DOI: https://doi.org/10.7150/thno.49819
Luo, D., Liang, Y., Wang, Y., Ye, F., Jin, Y., Li, Y., ... & Yang, Q. (2023). Long non-coding RNA MIDEAS-AS1 inhibits growth and metastasis of triple-negative breast cancer via transcriptionally activating NCALD. Breast Cancer Research, 25(1), 109. DOI: https://doi.org/10.1186/s13058-023-01709-1
Manevich, L., Okita, Y., Okano, Y., Sugasawa, T., Kawanishi, K., Poullikkas, T., ... & Kato, M. (2022). Glycoprotein NMB promotes tumor formation and malignant progression of laryngeal squamous cell carcinoma. Cancer Science, 113(9), 3244-3254. DOI: https://doi.org/10.1111/cas.15359
Megger, D. A., Bracht, T., Meyer, H. E., & Sitek, B. (2013). Label-free quantification in clinical proteomics. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 1834(8), 1581-1590. https://doi.org/10.1016/j.bbapap.2013.04.001 DOI: https://doi.org/10.1016/j.bbapap.2013.04.001
Minghui, R., Malecela, M. N., Cooke, E., & Abela-Ridder, B. (2019). WHO's Snakebite Envenoming Strategy for prevention and control. The Lancet Global Health, 7(7), e837-e838. DOI: https://doi.org/10.1016/S2214-109X(19)30225-6
Mohamedi Munarriz, Y., Fontanil López, T., Cobo Díaz, T., Vega Álvarez, J. A., Cobo Plana, J. M., Pérez Basterrechea, M., ... & Cal Miguel, S. J. (2019). Antitumor potential of Fibulin-5 in breast cancer cells depends on its RGD cell adhesion motif. Cellular physiology and biochemistry: international journal of experimental cellular physiology, biochemistry, and pharmacology.
Mohamedi, Y., Fontanil, T., Solares, L., Garcia-Suarez, O., Garcia-Piqueras, J., Vega, J. A., ... & Obaya, A. J. (2016). Fibulin-5 downregulates Ki-67 and inhibits proliferation and invasion of breast cancer cells. International journal of oncology, 48(4), 1447-1456. DOI: https://doi.org/10.3892/ijo.2016.3394
Ngwa, W., Addai, B. W., Adewole, I., Ainsworth, V., Alaro, J., Alatise, O. I., ... & Kerr, D. (2022). Cancer in sub-Saharan Africa: a lancet oncology commission. The Lancet Oncology, 23(6), e251-e312. DOI: https://doi.org/10.1016/S1470-2045(21)00720-8
Hidig, S. M., & Kitaghenda, F. K. (2025). Next-generation Cancer Screening and Prevention: The Convergence of Liquid Biopsy Diagnostics. Artificial Intelligence and Precision Medicine. Compr Cancer Detect Prev, 1(1), 001-005. DOI: https://doi.org/10.17352/ccdp.000001
Shen, Y., Dong, X., Li, X., Shi, Z., Shao, T., Jiang, J., & Song, J. (2025). WNT inhibitor SP5-mediated SERPING1 suppresses lung adenocarcinoma progression via TSC2/mTOR pathway. Cell Death & Disease, 16(1), 103. DOI: https://doi.org/10.1038/s41419-025-07440-3
Smolarz, B., Nowak, A. Z., & Romanowicz, H. (2022). Breast cancer—epidemiology, classification, pathogenesis and treatment (review of literature). Cancers, 14(10), 2569. DOI: https://doi.org/10.3390/cancers14102569
Sreeja, J. S., John, R., Dharmapal, D., Nellikka, R. K., & Sengupta, S. (2020). A fresh look at the structure, regulation, and functions of fodrin. Molecular and Cellular Biology, 40(17), e00133-20. DOI: https://doi.org/10.1128/MCB.00133-20
Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., & Bray, F. (2021). Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a cancer journal for clinicians, 71(3), 209-249. DOI: https://doi.org/10.3322/caac.21660
Wang, Q., Li, S., Xu, Y., Chen, Y., Xu, C., He, Q., ... & Lin, Y. (2025). UBC9 overexpression promotes proliferation and metastasis in gastric cancer via ATF2. World Journal of Surgical Oncology, 23(1), 270. DOI: https://doi.org/10.1186/s12957-025-03922-y
Wu, H., Chen, S., Liu, C., Li, J., Wei, X., Jia, M., ... & Zhi, X. (2021). SPTBN1 inhibits growth and epithelial-mesenchymal transition in breast cancer by downregulating miR-21. European journal of pharmacology, 909, 174401. https://doi.org/10.1016/j.ejphar.2021.174401 DOI: https://doi.org/10.1016/j.ejphar.2021.174401
Xiao, Z., Chen, H., Xu, N., Chen, Y., Wang, S., & Xu, X. (2024). MATR3 promotes liver cancer progression by suppressing DHX58–mediated type I interferon response. Cancer Letters, 604, 217231. https://doi.org/10.1016/j.canlet.2024.217231 DOI: https://doi.org/10.1016/j.canlet.2024.217231
Xu, L., Xiong, L., Chen, Y., Chen, J., Liu, X., Xu, Y., ... & Xu, X. (2024). IGFALS suppresses hepatocellular carcinoma progression by stabilizing PPAR-γ. International Immunopharmacology, 143, 113414. https://doi.org/10.1016/j.intimp.2024.113414 DOI: https://doi.org/10.1016/j.intimp.2024.113414
Yang, J., Lee, S. J., Kwon, Y., Ma, L., & Kim, J. (2020). Tumor suppressive function of Matrin 3 in the basal-like breast cancer. Biological research, 53. DOI: https://doi.org/10.1186/s40659-020-00310-6
Yuan, Y., Jiang, H., Xue, R., Feng, X. J., Liu, B. F., Li, L., ... & Zhang, X. E. (2025). Identification of a Biomarker Panel in Extracellular Vesicles Derived From Non‐Small Cell Lung Cancer (NSCLC) Through Proteomic Analysis and Machine Learning. Journal of Extracellular Vesicles, 14(5), e70078. DOI: https://doi.org/10.1002/jev2.70078
Zebene, E. D., Lombardi, R., Pucci, B., Medhin, H. T., Seife, E., Di Gennaro, E., ... & Woldemichael, G. B. (2024). Proteomic Analysis of Biomarkers Predicting Treatment Response in Patients with Head and Neck Cancers. International Journal of Molecular Sciences, 25(23), 12513. DOI: https://doi.org/10.3390/ijms252312513
Zhang, H., Wu, J., Hu, H., Tang, H., Tan, K., Hu, M., & Zhu, G. (2025). UBC9: a novel therapeutic target in papillary thyroid carcinoma. Journal of Endocrinological Investigation, 1-19. DOI: https://doi.org/10.1007/s40618-024-02523-y
Published
How to Cite
Issue
Section
Copyright (c) 2025 International journal of health sciences

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Articles published in the International Journal of Health Sciences (IJHS) are available under Creative Commons Attribution Non-Commercial No Derivatives Licence (CC BY-NC-ND 4.0). Authors retain copyright in their work and grant IJHS right of first publication under CC BY-NC-ND 4.0. Users have the right to read, download, copy, distribute, print, search, or link to the full texts of articles in this journal, and to use them for any other lawful purpose.
Articles published in IJHS can be copied, communicated and shared in their published form for non-commercial purposes provided full attribution is given to the author and the journal. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
This copyright notice applies to articles published in IJHS volumes 4 onwards. Please read about the copyright notices for previous volumes under Journal History.








