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Breast cancer refers to a malignant tumour resulting from the uncontrolled 
proliferation of epithelial cells in the mammary gland. It is the leading cause of 
cancer in women. In Senegal, regional disparities remain marked by differences 
in access to screening, diagnosis, and treatment. Proteomics provides a direct 
reflection of the functional state of tissues and biological pathways and 
captures the functional effects of molecular alterations. In order to better 
understand the relationship between the pathogenesis of breast cancer and the 
existence of potential biomarkers based on each underlying clinical and 
sociodemographic parameter, this study performs correlation analyses. 
Proteins were extracted from healthy and cancerous tissues. The analytical 
workflow showed 30 proteins that were statistically deregulated between 
those under and over 50 years of age, 5 proteins between married and 
unmarried patients, 37 proteins between women with fewer than 7 children 
and those with more than 7 children, six proteins between the early stage and 
the locally advanced stage, and treatment response showed that 17 proteins 
were statistically deregulated. The results of this study have identified 
numerous proteins with high prognostic value associated with robust statistics 
and significantly overexpressed according to the parameters. 
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1   Introduction 
 

Breast cancer refers to a malignant tumour resulting from the uncontrolled proliferation of epithelial cells in 
the mammary gland. It is the leading cause of cancer in women (Smolarz et al., 2022). According to the 
GLOBOCAN report, in 2022, this cancer surpassed lung cancer as the most frequently diagnosed cancer 
worldwide, with approximately 2.3 million new cases and an estimated 667,000 deaths (Sung et al., 2021). In 
Africa, breast cancer is the most common cancer among women. An estimated 198,553 new cases and 91,252 
deaths were reported on the continent in 2022, with a high mortality/incidence ratio reflecting late diagnosis 
and more limited access to specialized care. In Senegal, there were 11,841 new cases of cancer across all sites 
in 2022. Among women, breast cancer ranked second among all cancers, accounting for more than 24% of 
new cases (1,838) and 12% of deaths (976) (Ferlay et al., 2021). Beyond this burden, regional disparities 
remain marked by differences in access to screening, diagnosis, and treatment (Castaldi et al., 2022). These 
inequalities necessitate integrative approaches capable of linking tumour biology to clinical and social 
contexts. This reality poses the challenge of integrating these vast amounts of data to accurately predict 
complex pathophysiology and translate this complexity into clinically actionable insights (Heo et al., 2021; 
Kidd et al., 2015). These figures illustrate the need for practical molecular tools to improve prevention, early 
detection, and management. This burden is expected to increase further by 2040, with rapid growth 
anticipated in sub-Saharan Africa if screening and treatment capacities are not further expanded (Ngwa et al., 
2022; Hidig & Kitaghenda, 2025). 

Proteomics studies proteins, their abundance, modifications, and interactions on a large scale. It provides a 
direct reflection of the functional state of tissues and biological pathways. Unlike genomics, which mainly 
provides information on potential, proteomics captures the actual activity of signalling networks and the 
functional effects of molecular alterations (Al-Amrani et al., 2021). Modern platforms (LC-MS/MS, label-based 
or label-free quantification) make it possible to map thousands of proteins and analyse their variations 
according to clinical characteristics, paving the way for the identification of targets and disease signatures 
(Megger et al., 2013).  

In this context, protein biomarkers play a central role in precision medicine. They can be diagnostic (early 
detection), prognostic (risk stratification), and predictive (probability of response to treatment) (Bedore et al., 
2024). Recent studies show that clinical proteomics, including real-time proteomics, can refine therapeutic 
decisions, demonstrating its growing maturity in oncology (AlDoughaim et al., 2024). 

This study is part of that effort. We are analysing the correlations between tumour protein abundance and 
clinical and sociodemographic parameters (age, marital status, number of children, stage, response to 
treatment) to identify proteins associated with these dimensions. Our goal is to identify biomarkers for 

https://creativecommons.org/licenses/by-nc-nd/4.0/


IJHS                         E-ISSN: 2550-696X   

FALL, M., CAMARA, M., NIANG, O., MBAYE, F., DEM, A., KA, S., DIALLO, M. A., HARDOUINE, J., TOURE, S., DIA, N., SEMBENE, M., 

COSETTE, P., & CORNILLOT, E. (2025). Proteomic mapping associated with clinical and sociodemographic parameters of breast cancer in 

Senegal. International Journal of Health Sciences, 9(3), 961–980. https://doi.org/10.53730/ijhs.v9n3.15835 

963 

stratification, response prediction, and, ultimately, improved care pathways in the Senegalese and African 
context. 

 
 

2   Materials and Methods 
 

This study involves performing correlation analyses based on data from a previous differential proteomics 
study. The complete methodology used to obtain this database is summarized below. 
 
Study population and ethics 
Healthy and cancerous tissue samples were collected at the Juliot Curie Institute, Aristide le Dantec Hospital, 
Dakar, Senegal. They were sent to the molecular biology laboratory at the Institute for Research and 
Development (IRD). Clinical and pathological data were obtained from patient records, and this study was 
approved by the ethics committee of Cheikh Anta Diop University. We confirm that written informed consent 
was obtained from the donor or their relatives for the use of this data.  
 
Protein extraction 
Proteins were extracted from healthy and cancerous tissues, then suspended in a lysis buffer containing 7 M 
urea, 4 M thiourea, 4% Chaps, 25 mM Tris, 200 mM DTT, and 500 µl protease inhibitors (Roche) at room 
temperature for 4 hours. The proteins in the supernatants were collected and quantified using the Bradford 
method. 
 
Label Free  
25 μg of protein from healthy and cancerous tissue were separated by 7% SDS-PAGE. Bands of interest were 
excised, the proteins were digested with trypsin (Promega), and the peptide fractions were recovered. Mass 
spectrometry analyses were performed using a linear ion trap/Orbitrap hybrid mass spectrometer (LTQ 
nanochromatography system (Easy-nLC II, Thermo Scientific).  
 
Protein identification and peptide quantification 
The raw data files were processed using Proteome Discoverer 1.3 software (Thermo Scientific), and a list of 
peaks was identified using the Mascot search engine (version 2.2, Matrix Science) against the Swiss Prot Homo 
sapiens database (V55.6; 390,696 sequences). Raw files (.raw) were processed using ProGenesis LC-MS 
software (Nonlinear Dynamics; V4.0.4441.29989) to generate a 2D peptide mass map showing retention time 
(RT) versus m/z.  
 
Statistical analyses 
In this study, analyses were performed using R software (R.4.4.2 2021.10.31) and RStudio (V.2024.09.1). The 
main packages used were limma, dplyr, ggplot2, and openxlsx, with reproducible scripts applied identically to 
each clinical variable. The significance threshold was p<0.05.  
 
Data and organisation 
The raw proteomic data were reorganized into two tables: an abundance matrix (rows = proteins, columns = 
samples) and a clinical table (1 row per sample) containing the variables of interest. Sample identifiers were 
harmonized between the two tables. For more in-depth analysis, proteins with a p-value <0.05 were selected 
for the characteristic studied. Finally, proteins with an FC >2 were targeted as significantly overexpressed for 
the parameter considered. 
 
Definition of clinical variables 
The variables were analysed separately: age (<50 vs. ≥50 years), number of children (<7 vs. ≥7), marital status 
(married vs. unmarried (single and widowed)), stage (early (I–II) vs. locally advanced (III)), and response to 
treatment (100% vs. <100%). 
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Differential analysis (limma) 
For each variable, we fitted a linear model per protein using limma (R), coding the variable of interest as a 
factor and constructing the required contrast. 
The moderated statistics from limma (moderated t-test, eBayes) provided for each protein logFC (log2 
difference in means between groups in the direction of the contrast); p-value, and q-value (Benjamini–
Hochberg, adj.P.Val column). The directional fold change was calculated as FC = 2^logFC. For each contrast, we 
reported a complete table (all proteins) and significant lists (q<0.05, logFC sign) as well as Top 10 (sorted by q 
then |logFC|), ready for insertion. 
 
Correlations and principal component analysis (PCA)  
For each parameter, we selected the most informative proteins (Top related to the parameter according to 
limma) and calculated protein-protein correlations (Pearson) from log2 values (visualized in upper triangular 
matrices). An exploratory principal component analysis (PCA) was performed on these same proteins 
(centered-reduced data), with visualization in a correlation circle (variable map). 
 
 

3   Results and Discussions 
 

3.1 Results 
 
In the first part of this study, we filtered all proteins that were identified with at least two peptides. This 
highlighted statistically deregulated proteins (p-value < 0.05), considering each of the five parameters 
included in the study (Table 1).  

For the age parameter, we found 30 proteins that were statistically deregulated between those under and 
over 50 years of age. Among these proteins, 22 were overexpressed in postmenopausal women, compared 
with only 8 in women under 50. Considering marital status, only 5 proteins were statistically deregulated 
between married and unmarried patients. Among these proteins, 3 were overexpressed in unmarried women 
and 2 in married women. 

Analysis of the number of children per patient showed that 37 proteins were statistically deregulated 
between women with fewer than 7 children and those with more than 7 children. Thus, more than 89% of 
these proteins (n=33) were overexpressed in women with fewer than 7 children. As for the stage of cancer, we 
found six proteins that were statistically deregulated between the early stage and the locally advanced stage, 
with five proteins overexpressed in patients at the early stage. 

Finally, the filters applied to the quantitative analysis of treatment response showed that 17 proteins were 
statistically deregulated, all of which were overexpressed in patients who achieved an optimal response to 
treatment. 
 

Table 1 
List of all statistically deregulated proteins for each of the clinical-pathological and sociodemographic 

parameters 
 

Proteins All proteins Proteins p<005 Total proteins p<005 
]0;50 years old] 225 8 

30 [50 years old;+…[ 343 22 
Unmarried 430 3 

5 Married 138 2 
Fewer than 7 children 411 33 

37 More than 7 children 157 4 
Early stage (I and II) 443 5 

6 Locally advanced stage (III) 125 1 
Suboptimal response (<100%) 122 0 

17 Optimal response (100%) 446 17 
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For better visualization, we generated a heat map (Figure 1) representing the normalized expression levels of 
the most differentially expressed proteins. Each column corresponds to a patient, and each row to an 
identified protein. The color indicates the relative intensity of expression (red = overexpression, blue = under 
expression, yellow = intermediate expression). Hierarchical clustering, applied to proteins and patients, 
highlights distinct groupings according to protein profiles. The clinical annotations above the columns 
indicate treatment response (Yes/No), tumour stage (0–3), number of children (0–8), marital status (married, 
single, widowed), and age (40–80 years). This figure suggests the existence of specific protein signatures 
associated with therapeutic response and tumour stage, while sociodemographic variables appear to be less 
decisive. 
 

 
Figure 1. Heat map of the most discriminating proteins according to clinical and sociodemographic 
parameters. Heat map representing normalised expression levels (Z-score per protein) of the proteins 
showing the greatest differences between responders and non-responders. Each column corresponds to a 
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patient, and each row to an identified protein. The colour indicates the relative intensity of expression (red = 
overexpression, blue = under expression, yellow = intermediate expression). Hierarchical clustering applied to 
proteins highlights distinct groupings according to protein profiles. The clinical annotations above the 
columns indicate treatment response (Yes/No), tumour stage (0–3), number of children (0–8), marital status 
(married, single, widowed), and age (40–80 years). 
 
Choice of the number of factorial axes for principal component analysis (PCA) 
 
In this analysis, the scatter plots of the eigenvalues for all five patient parameters considered revealed that the 
break (Elbow) after the first two axes is followed by a steady decline from the third axis onwards (Figure 2). 
This allows the first two dimensions (Dim 1 and Dim 2) to be retained for principal component analysis (PCA) 
because they explain more than 50% of the information for almost all parameters. The first ACP factorial plan 
contains the maximum amount of information and provides the best quality representation for explaining the 
protein profile of patients based on clinical, pathological, and sociodemographic factors. 
 

 
Figure 2. Scree plots of the eigenvalues of all clinical and sociodemographic parameters. The eigenvalue score 
revealed that the drop-off (elbow) after the first two axes was followed by a steady decrease from the third 
axis onwards for all parameters. 
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Study of protein profiles according to patient age 
 
By selecting proteins that were statistically deregulated between patients under 50 and those over 50 and 
whose fold change was greater than 2, we found that all proteins (n=22) were significantly overexpressed in 
postmenopausal women (Table 2). 
 

Table 2 
List of proteins significantly overexpressed according to age (p < 0.05; FC>2) 

 
Protein_id p value Fold_change Highest mean condition 

UBC9_HUMAN 9.E-04 866.52 ≥50 
PIP_HUMAN 3.E-03 894.20 ≥50 
ZO1_HUMAN 5.E-03 22.91 ≥50 
LYAG_HUMAN 6.E-03 671.93 ≥50 
NLTP_HUMAN 6.E-03 452.57 ≥50 
MATR3_HUMAN 6.E-03 89.55 ≥50 
ABHDA_HUMAN 7.E-03 702.97 ≥50 
ILF2_HUMAN 1.E-02 34.50 ≥50 
CHM4B_HUMAN 1.E-02 106.95 ≥50 
RABP2_HUMAN 1.E-02 33.56 ≥50 
RBBP7_HUMAN 2.E-02 234.56 ≥50 
LKHA4_HUMAN 2.E-02 2757.38 ≥50 
RAB10_HUMAN 2.E-02 217.47 ≥50 
HMGB2_HUMAN 2.E-02 113.48 ≥50 
SMD3_HUMAN 3.E-02 15.35 ≥50 
UBA1_HUMAN 3.E-02 11.55 ≥50 
IFM1_HUMAN 3.E-02 91.87 ≥50 
CBPB1_HUMAN 4.E-02 25.97 ≥50 
SMD2_HUMAN 4.E-02 7.29 ≥50 
AATM_HUMAN 4.E-02 15.10 ≥50 
DX39A_HUMAN 4.E-02 6.09 ≥50 
VDAC3_HUMAN 4.E-02 11.45 ≥50 

 
Correlations between age-related proteins 
 
PCA on age-associated proteins shows that the first two axes explain 68.2% of the variance (Dim1 = 40.5%, 
Dim2 = 27.7%) (Figure 3A). Axis 1 (Dim1) captures a major age-related gradient. The proteins UBC9_HUMAN, 
CHM4B_HUMAN, and MATR3_HUMAN (long red arrows) load positively on this axis, indicating that they co-
vary and contribute strongly to the age signal. In contrast, MAP1S_HUMAN and, to a lesser extent, 
CRP_HUMAN point in the opposite direction, suggesting a trend opposite to that of the previous group. On axis 
2 (Dim2), RL10A_HUMAN, HNRPM_HUMAN, and SC22B_HUMAN (marked contributions) stand out, adding a 
complementary dimension to the age signal within the same set. Finally, the proteins GPNMB_HUMAN and 
CBPB1_HUMAN (short/blue vectors) are less well represented by these two axes and contribute less to the 
main structure. 

The correlation matrix (Pearson) calculated for the proteins most associated with age shows a strongly 
correlated module observed in particular between the proteins MATR3_HUMAN, CHM4B_HUMAN, and 
UBC9_HUMAN (Figure 3B). We also note a strong correlation between RL10A_HUMAN and HNRPM_HUMAN. 
These proteins vary in concert in the samples (dark blue discs), suggesting a shared biological process related 
to aging. 

Conversely, MAP1S_HUMAN shows marked negative correlations with this module (red discs), indicating 
an opposite trend: when the proteins in the module increase or decrease with age, MAP1S follows the 
opposite direction. CRP_HUMAN shows more modest negative correlations, indicating partial involvement in 
the age-related process. 
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Figure 3. Correlation between proteins associated with patient age. Correlation circle of principal component 
analysis with high-contribution variables in red arrow and low-contribution variables in blue arrow. 
Proximities between variables are interpreted in terms of correlation (A). Correlation matrix with Positive 
correlations is shown in blue and negative correlations in orange. Color intensity and circle size are 
proportional to correlation coefficients (B). 
 
Study of protein profiles according to patients' marital status 
 
By selecting proteins that were statistically deregulated between married and unmarried patients and had a 
fold change greater than 2, we found that both target proteins were significantly overexpressed in married 
women (Table 3). 
 

Table 3 
List of proteins significantly overexpressed according to marital status (p < 0.05; FC>2) 

 
Protein_id p value Fold_change Highest mean condition 

ALS_HUMAN 1.E-02 46.71 Married 
SPTB1_HUMAN 4.E-02 6.26 Married 

 
Correlations between proteins associated with marital status 
 
PCA applied to proteins associated with marital status shows that the first two axes explain 71.5% of the 
variance (Dim1 = 57.0%, Dim2 = 14.5%) (Figure 4A). Axis 1 (Dim1) carries most of the signal and contrasts a 
ribosomal/nuclear group (RL35_HUMAN, RS23_HUMAN, RL9_HUMAN, RL10A_HUMAN, CBX3_HUMAN (long 
arrows to the right, strong contribution) to a secretory/adhesion-immune group (IGJ_HUMAN, 
SPTB1_HUMAN, BCAM_HUMAN) oriented to the left. This suggests two antagonistic signatures depending on 
marital status. Axis 2 (Dim2) mainly distinguishes ZG16B_HUMAN (high contribution, upward) and, to a lesser 
extent, PIP_HUMAN. 

This trend is confirmed by the correlation matrix (Pearson, upper triangle) on the proteins most 
associated with marital status, revealing two antagonistic modules (Figure 4B): the proteins RS23_HUMAN, 
RL35_HUMAN, RL10A_HUMAN, RL9_HUMAN, and CBX3_HUMAN are strongly positively correlated (dark 
blue). And the proteins PIP_HUMAN, IGJ_HUMAN, ZG16B_HUMAN, SPTB1_HUMAN, and BCAM_HUMAN also 
show marked negative correlations between them. 
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These results suggest that the distinction between married and unmarried women is accompanied by a 
proteomic axis contrasting ribosomal/nuclear signatures with secretory/adhesion/immune signatures.  

 
Figure 4. Correlations between proteins associated with patients' marital status. Correlation circle of 
principal component analysis (A) and Correlation matrix (B). 
 
Study of protein profiles based on the number of children of patients 
 
By selecting proteins that were statistically deregulated between patients with fewer than 7 children and 
those with more than 7 children and whose fold change was greater than 2, we also found that all 4 targeted 
proteins were significantly overexpressed in patients with more than 7 children (Table 4). 
 

Table 4 
List of proteins significantly overexpressed according to the number of children (p < 0.05; FC>2) 

 
Protein_id Fold_change p value Highest mean condition 

FBLN5_HUMAN 25.42 1.E-02 Children ≥7 
GSHB_HUMAN 11.46 4.E-02 Children ≥7 
GLNA_HUMAN 9.55 2.E-02 Children ≥7 
RAN_HUMAN 7.45 3.E-02 Children ≥7 

 
Correlations between proteins associated with the number of children of patients 
 
PCA on proteins associated with the number of children shows that the first two axes explain 71.2% of the 
variance (Dim1 = 51.6%, Dim2 = 19.6%) (Figure 5A). Axis 1 (Dim1) clearly separates two antagonistic sets: 
FBLN5_HUMAN, PDLI5_HUMAN, HNRPL_HUMAN, GPNMB_HUMAN (long arrows on the right) vs. 
UBC9_HUMAN, EWS_HUMAN, GANAB_HUMAN (arrows on the left). These groups vary in opposite directions 
within the gradient related to the number of children. Axis 2 (Dim2) mainly reinforces GPNMB_HUMAN and 
HNRPL_HUMAN (upward arrows), indicating a complementary dimension of variation beyond the main axis. 
We also found proteins that are poorly represented by these two axes: A1AG2_HUMAN and CRP_HUMAN. 
These proteins are close to the origin (short arrows), suggesting a weaker contribution to the main structure. 

The matrix (Pearson, upper triangle) highlights two coherent subsets (Figure 5B): EWS_HUMAN, 
UBC9_HUMAN, and GANAB_HUMAN on the one hand, and FBLN5_HUMAN with CRP_HUMAN and 
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A1AG2_HUMAN to a lesser extent on the other, show strong positive correlations between them (dark blue 
discs), suggesting that they vary in concert according to the category studied (number of children). 

Conversely, we note that the proteins CRP_HUMAN, FBLN5_HUMAN, A1AG2_HUMAN, and PPCS_HUMAN 
form a second group that is negatively correlated with each of the proteins EWS_HUMAN, UBC9_HUMAN, and 
GANAB_HUMAN. This indicates opposite behaviour within the gradient related to the number of children. 

 
Figure 5. Correlations between proteins associated with the number of children of patients. Correlation 
circle of principal component analysis (A) and Correlation matrix (B). 
 
Study of protein profiles according to cancer stage 
 
By selecting proteins that were statistically deregulated between the different stages of cancer and whose fold 
change was greater than 2, we also found that only one protein was significantly overexpressed, and that was 
at the locally advanced stage (Table 5). 
 

Table 5 
List of proteins significantly overexpressed according to cancer stage (p < 0.05; FC>2) 

 
Protein_id p value Fold_change Highest mean condition 

IC1_HUMAN 7.E-03 3.37 Locally advanced (III) 
 
Correlations between proteins associated with cancer stage 
 
PCA applied to stage-associated proteins explains 66.4% of the variance (Dim1= 44.1%, Dim2= 22.3%) 
(Figure 6A). Axis 1 (Dim1) clearly contrasts two signatures: on the right, CRP_HUMAN, PGS1_HUMAN, 
ANGT_HUMAN, A1AG2_HUMAN, and MAP1S_HUMAN (long arrows, strong contribution), and on the left, 
LYAG_HUMAN and NLTP_HUMAN. These groups vary inversely along the stage gradient. Axis 2 (Dim2) 
reinforces the opposition between CRP_HUMAN (downward-oriented) and LYAG_HUMAN / NLTP_HUMAN 
(upward-oriented), adding a complementary dimension beyond Dim1. The shorter vectors (CBPQ_HUMAN, 
GPNMB_HUMAN and HNRPL_HUMAN) are less well represented by these two axes. 
The correlation matrix (Pearson, upper triangle) highlights two strongly correlated and antagonistic modules 
(Figure 6B): PGS1_HUMAN, ANGT_HUMAN, A1AG2_HUMAN, and MAP1S_HUMAN show high positive 
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correlations between them (dark blue discs), indicating robust co-variation within the cohort. Conversely, all 
these proteins are negatively correlated with the proteins LYAG_HUMAN and NLTP_HUMAN. 

 
Figure 6. Correlations between proteins associated with cancer stage. Correlation circle of principal 
component analysis (A) and Correlation matrix (B). 
 
Study of protein profiles based on response to treatment 
 
By selecting proteins that were statistically deregulated between treatment responses and had a fold change 
greater than 2, we also found that all targeted proteins (n=17) were significantly overexpressed in patients 
with an optimal response to treatment (Table 6). 
 

Table 6 
List of proteins significantly overexpressed based on response to treatment (p < 0.05; FC>2) 

 
Protein_id p value Fold_change Highest mean condition 

HTRA1_HUMAN 2.E-02 231.12 Response 100% 
EIF3A_HUMAN 9.E-03 110.64 Response 100% 
RUXF_HUMAN 2.E-02 102.14 Response 100% 

GPNMB_HUMAN 4.E-04 62.25 Response 100% 
RL10_HUMAN 3.E-02 38.88 Response 100% 

ARPC3_HUMAN 2.E-02 10.78 Response 100% 
COCA1_HUMAN 1.E-02 6.28 Response 100% 
RUXE_HUMAN 1.E-02 6.03 Response 100% 
TPM1_HUMAN 2.E-02 4.77 Response 100% 
NDKA_HUMAN 3.E-03 4.42 Response 100% 
RCN3_HUMAN 2.E-02 4.19 Response 100% 
RHOA_HUMAN 4.E-02 3.81 Response 100% 
TAGL2_HUMAN 3.E-02 3.58 Response 100% 
PEA15_HUMAN 2.E-02 3.29 Response 100% 
IQGA1_HUMAN 2.E-02 3.21 Response 100% 
CN166_HUMAN 4.E-02 3.16 Response 100% 
CNN3_HUMAN 4.E-02 2.76 Response 100% 
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Correlations between proteins associated with treatment response 
 
PCA performed on response-associated proteins explains 69.0% of the variance (Dim1= 48.3%, Dim2=20.7%) 
(Figure 7A). Axis 1 (Dim1) contrasts two antagonistic signatures: on the right, APOE_HUMAN, PGS1_HUMAN 
and A1AG2_HUMAN, and on the left, SPRE_HUMAN, DDAH1_HUMAN. Axis 2 (Dim2) mainly highlights 
PIP_HUMAN (long arrow pointing upwards) and, in the opposite quadrant, SPRE/DDAH1. This suggests a 
complementary dimension of variation beyond the main opposition captured by Dim1. The proteins 
APOE_HUMAN, PGS1_HUMAN, PIP_HUMAN (coloured redder) make the strongest contributions to the axes; 
vectors close to the origin (PEA15/A1AG2/MAP1S) are less well represented on both dimensions. 

The correlation matrix (Pearson, upper triangle) highlights two strongly correlated and opposing modules 
(Figure 7B). The first group, consisting of the proteins PIP_HUMAN, APOE_HUMAN, GPNMB_HUMAN, 
PEA15_HUMAN, A1AG2_HUMAN, and MAP1S_HUMAN, shows high positive correlations between them (dark 
blue discs), indicating robust co-variation related to the response. The second group, consisting of the 
proteins ZG16B_HUMAN, SPRE_HUMAN, and DDAH1_HUMAN, is strongly correlated with each other and 
negatively correlated with the first module (red discs between groups). 

 
Figure 7. Correlations between proteins associated with treatment response. Correlation circle of 
principal component analysis (A) and Correlation matrix (B). 
 
3.2 Discussions 
 
This work is one of the few studies combining a differential proteomics approach with the clinical, 
pathological, and sociodemographic characteristics of breast cancer in Senegalese patients. The high mortality 
rate caused by these cancers requires the development of effective diagnostic and prognostic biomarkers to 
improve patient care and long-term survival. To this end, to better understand the relationship between the 
pathogenesis of breast cancer and the existence of potential biomarkers based on each underlying clinical and 
sociodemographic parameter, stricter criteria (p < 0.02 and FC > 2) were used to statistically evaluate the 
deregulated proteins in this study (Dalman et al., 2012). For each parameter selected, proteins with a good 
signature (best p-values and fold change) will be discussed. 
Thus, considering the age of the patients, 22 proteins were targeted, including ubiquitin-conjugating enzyme 9 
(UBC9_HUMAN: p=9.04; FC=866.52) showed a better signature. This enzyme is involved in many cellular 
functions, and its dysregulation has been associated with various malignant tumours. In breast, bladder, and 
stomach cancers, UBC9 overexpression is closely linked to tumour cell proliferation and invasion (Huang et 
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al., 2020; Wang et al., 2025). Our findings on the overexpression of the UBC9 protein in tumour tissue 
according to age are consistent with recent studies, which have also shown that overexpression of this 
protein, associated with a poor prognosis in breast, lung, and pancreatic cancer, is significantly correlated 
with patient age (Li et al., 2025; Zhang et al., 2025). All of the above-mentioned studies confirm that this 
protein is a good diagnostic and prognostic biomarker. 

We also found a good protein signature for matrin 3 (MATR3_HUMAN: p=6.03; FC=89.55). This is an 
abundant nuclear protein with DNA and RNA binding domains, which in breast cancer could potentially be a 
prognostic biomarker for predicting better survival in patients. Indeed, the MATR3 protein inhibits 
tumourigenicity, induces cell death by apoptosis, and inhibits the migration and invasion of basal breast 
cancer cells (Yang et al., 2020). However, other studies have shown that the MATR3 protein has a greater 
influence on the progression and metastasis of breast cancer and liver cancer. This shows a correlation 
between this protein and a poor prognosis (Luo et al., 2023; Xiao et al., 2024). The same is true for lung 
cancer, where the MATR3 protein is significantly overexpressed in cancerous tissue and associated with 
poorer overall patient survival. It is involved in carcinogenesis and tumour progression (Durślewicz et al., 
2022). 

Correlative analysis of protein abundance based on the marital status of patients enabled us to identify two 
proteins that were significantly overexpressed in married women. The labile acid subunit of the insulin-like 
growth factor-binding protein complex (ALS_HUMAN: p=1.02; FC=46.71) scored highly. This protein is 
synthesised mainly by plasma cells in the liver and is capable of binding to insulin-like growth factors. It is 
therefore implicated in liver cancer (Minghui et al., 2019). Various studies conducted on liver cancer 
corroborate our findings on ALS protein overexpression. In these studies, the ALS protein was identified as 
being involved in tumour prognosis and progression in liver tissue. It is also associated with a poor prognosis. 
This allows it to be classified as a potential biomarker and prognostic indicator for liver cancer (Chen et al., 
2021; Xu et al., 2024). 

In addition, the erythrocyte spectrin beta chain (SPTB1_HUMAN: p=4.02; FC=6.26) also had a good protein 
signature. This protein is important for determining cell shape and the functional arrangement of 
transmembrane proteins. Its overexpression is sometimes linked to tumour suppression, but in most studies 
it plays a pro-oncogenic role, particularly in colorectal, gastric, lung, breast, and skin cancers (Lin et al., 2021; 
Sreeja et al., 2020). Other studies on breast and liver cancer have corroborated our findings that 
overexpression of the SPTB1 protein is associated with a poor prognosis. This protein is involved in numerous 
signalling pathways linked to tumour development and metastasis (Huang et al., 2020; Wu et al., 2021). 

By correlating protein abundance with the number of children the patients had, we identified four proteins 
that were significantly overexpressed in patients with more than seven children. Among these proteins was 
fibulin-5 (FBLN5_HUMAN: p=1.02; FC=25.42). This protein, also known as DANCE, EVEC, or UP50, is a 
secreted 66 kDa glycoprotein belonging to the fibulin family, whose members play an essential role in tissue 
growth and development. It thus contributes to creating a microenvironment conducive to tumour growth, 
but also stimulates various mechanisms that can hinder its progression, demonstrating its tumour-promoting 
and protective functions. However, studies have shown that the FBLN5 protein is involved in tumour 
proliferation in breast and cervical cancers (Mohamedi et al., 2016, 2019). Researchers have recently 
highlighted the association between the FBLN5 protein and differentiation and prognosis in gastric and breast 
cancers. These authors have suggested the FBLN5 protein as a prognostic biomarker and therapeutic target 
because its overexpression is associated with low survival rates in patients (Choi et al., 2025; Karanis et al., 
2019). 

In this study, correlation analysis of protein abundance according to cancer stage identified a specific 
protein, namely plasma C1 protease inhibitor (IC1_HUMAN: p=7.03; FC=3.37). This protein, also known as 
Serpin G1, is a reference biomarker for diagnosis and prognosis in numerous studies on cancers, particularly 
prostate cancer and oropharyngeal cancer. This protein was significantly overexpressed in cancerous tissue 
and associated with a poor prognosis (Hsieh et al., 2025; Shen et al., 2025; Zebene et al., 2024). Our findings 
on IC1 protein overexpression are corroborated by a study on lung cancer. In this study, overexpression of our 
protein of interest was significantly associated with metastasis (Yuan et al., 2025). 

Finally, this study aims to correlate protein abundance with response to treatment. The analyses identified 
17 proteins with a good signature, including transmembrane glycoprotein NMB (GPNMB_HUMAN: p=4.04; 
FC=62.25). This is a type 1 transmembrane protein involved in the malignant progression of various cancers, 
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including melanoma, glioma, and breast cancer. Its high expression is considered an unfavourable prognostic 
factor. It can promote primary tumour growth and metastasis, and its expression is correlated with shorter 
recurrence-free survival in patients (Lazaratos et al., 2022; Manevich et al., 2022). Our findings on GPNMB 
protein overexpression in patients with optimal response to treatment confirm the work of Biondini et al. 
(2022), also focusing on breast cancer. These researchers have shown that GPNMB levels increase in response 
to standard and experimental treatments for several subtypes of breast cancer. Khan et al. (2021), also 
showed in a study on lung cancer that the IC1 protein was associated with treatment response in patients. 

 
 

4   Conclusion 
 

This work is one of the few proteomic studies correlating the clinical, pathological, and sociodemographic 
parameters of Senegalese breast cancer patients with the proteins overexpressed in cancerous tissue. By 
linking tumour biology to clinical and social determinants, our objective is to identify biomarkers for age, 
marital status, number of children, and stratification and prediction of response to treatment in a Senegalese 
and African context. The results of this study have identified numerous proteins with high prognostic value 
associated with robust statistics and significantly overexpressed according to the parameters. Some of these 
proteins have already been reported in many cancers, and the next step would be to evaluate the expression 
of these proteins in cancerous tissues using orthogonal ELISA and immunohistochemistry methods to validate 
their potential as breast cancer biomarkers. 
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