

Artificial Intelligence in Pharmaceutical Manufacturing: Transforming Sterile Compounding and Quality Assurance

Gowtham Nakka ^a, Sakshi Gupta ^b, Aricson Pereira ^c

Manuscript submitted: 27 September 2025, Manuscript revised: 18 November 2025, Accepted for publication: 08 December 2025

Corresponding Author ^a

Abstract

Artificial intelligence (AI) applications in sterile compounding and 503B outsourcing facilities represent a transformative approach to enhancing quality, safety, and operational throughput in pharmaceutical manufacturing. This paper examines the current state of AI implementation in sterile compounding environments, focusing on key applications including AI-driven robotics for aseptic processing, real-time quality monitoring systems, predictive analytics, and regulatory intelligence platforms. However, implementation faces significant challenges related to data integrity, system validation, and regulatory compliance under current Good Manufacturing Practices (cGMP). The FDA's evolving regulatory framework, including the recent risk-based credibility assessment guidance, establishes structured approaches for validating AI systems while emphasizing the importance of context-specific performance evaluation. Key data integrity challenges include ensuring accuracy, completeness, and consistency across multiple interconnected systems, while maintaining comprehensive audit trails and cybersecurity protections. This paper presents compliance-by-design strategies that embed regulatory requirements into AI system architecture from initial development phases, addressing critical areas such as traceability, accountability, and continuous performance monitoring. Successful AI implementation requires robust data governance frameworks, risk-based validation approaches, and integrated automation architectures that span compounding, release testing, and supply chain planning. Future opportunities include advances in explainable AI, integration with continuous manufacturing technologies, and collaborative development initiatives that will accelerate industry-wide adoption while ensuring regulatory compliance and patient safety.

Keywords

*artificial intelligence;
data integrity;
pharmaceutical quality;
predictive analytics;
risk-based validation;
sterile compounding;*

*International Journal of Health Sciences © 2025.
This is an open access article under the CC BY-NC-ND license
(<https://creativecommons.org/licenses/by-nc-nd/4.0/>).*

^a University of Louisiana at Lafayette, Lafayette, Louisiana, USA

^b Independent Researcher, Boston, Massachusetts, USA

^c Independent Researcher, San Francisco, California, USA

Contents

Abstract.....	945
1 Introduction.....	946
2 Background on Sterile Compounding and 503B Outsourcing Facilities	946
3 Objective and Scope of the Paper	947
4 Literature Review.....	948
5 AI Applications in Sterile Compounding.....	949
6 Implementation Challenges.....	952
7 Strategies for Successful Implementation.....	955
8 Conclusion and Future Directions.....	957
Acknowledgments.....	957
References	958
Biography of Authors	960

1 Introduction

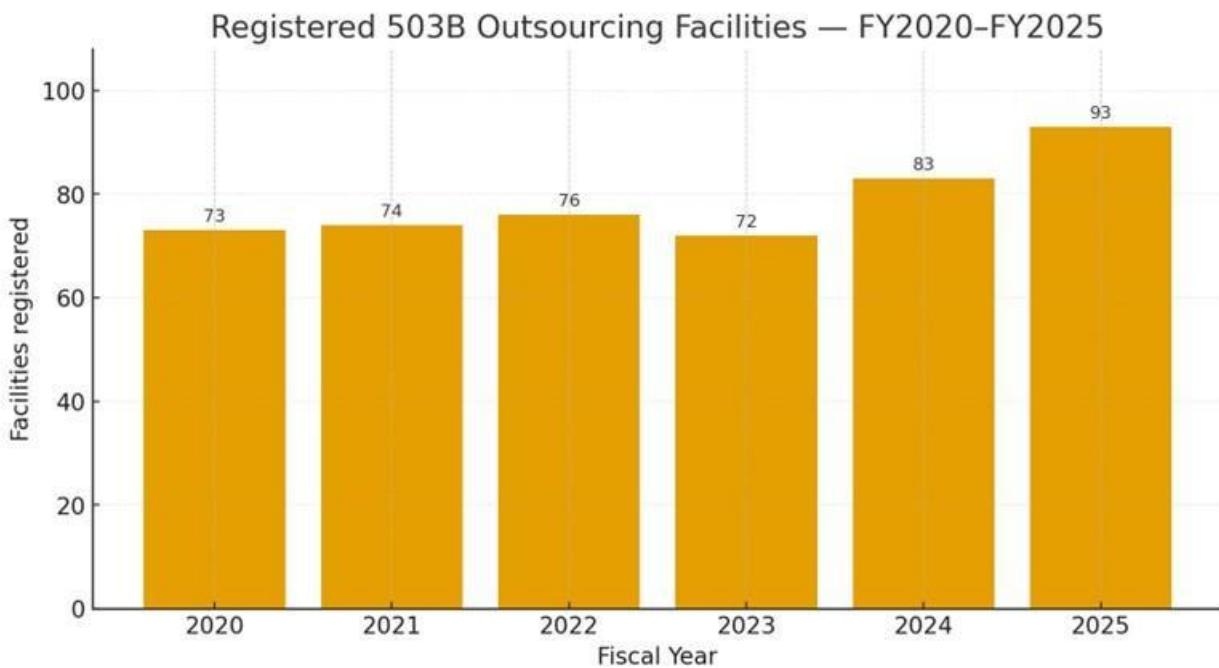
Artificial intelligence is transforming various industries, with its application in healthcare, particularly pharmaceutical manufacturing and pharmacy practices, gaining significant traction due to its potential to revolutionize drug discovery and optimize operational workflows (Naim et al., 2026; Rajesh & Elumalai, 2025; Bhat et al., 2025). In sterile compounding and 503B outsourcing facilities, AI's capacity to analyze vast datasets, automate complex tasks, and predict potential issues offers a paradigm shift in maintaining stringent quality and safety standards. The integration of AI with the Internet of Things can further enhance these capabilities by enabling real-time monitoring and predictive maintenance of manufacturing parameters, thereby bridging the gap between digital and physical worlds in pharmaceutical production. Early success is strongest in quality control, pharmacovigilance, and shortage prediction; future gains hinge on robust data governance, explainable models, and integrated automation architectures spanning compounding, release testing, and supply-chain planning. Pharmaceutical compounding spans patient-specific (503A) and non-patient-specific, batch-based sterile production under the 503B outsourcing facility framework established by the Drug Quality and Security Act (DQSA). This framework supports the customization of medications and the enhancement of drug availability, which can be further optimized through advanced AI applications in continuous manufacturing processes. This integration of AI algorithms into manufacturing processes facilitates machine learning and deep learning for real-time analysis, predictive maintenance, and automation, allowing for continuous monitoring of key manufacturing parameters and improving overall efficiency. AI systems, encompassing rule-based expert systems and sophisticated machine learning methods like decision trees, can perform tasks requiring human intelligence, such as learning, analyzing, reasoning, and decision-making.

2 Background on Sterile Compounding and 503B Outsourcing Facilities

Sterile compounding represents a critical component of pharmaceutical practice, encompassing both traditional 503A pharmacies and the newer 503B outsourcing facilities established under the Drug Quality and Security Act of 2013 (Gabay, 2014). Sterile compounding represents a critical component of pharmaceutical practice, encompassing both traditional 503A pharmacies and the newer 503B outsourcing facilities established under the Drug Quality and Security Act of 2013. A 503B compounding pharmacy is an FDA-registered outsourcing facility that compounds sterile drugs in bulk without requiring patient-specific prescriptions, provided they meet strict regulatory and quality standards (Gianturco et al., 2021). These facilities serve hospitals, surgical centers, and healthcare providers with ready-to-use sterile medications intended to streamline care, reduce preparation errors, and improve patient safety.

The distinction between 503A and 503B compounding pharmacies lies primarily in their scope of practice, level of regulatory oversight, and applicable quality standards. While 503A pharmacies operate under state regulation and compound medications based on valid patient-specific prescriptions, 503B outsourcing

facilities are held to significantly higher standards. They must register with the FDA, comply with full current Good Manufacturing Practices (cGMP) standards, and undergo routine FDA inspections. Unlike 503A pharmacies, they are subject to Artificial Intelligence Applications in Sterile Compounding and 503B Outsourcing: Enhancing Quality, Safety, and Throughput. Introduction, Background on Sterile Compounding and 503B Outsourcing Facilities, adverse event reporting, product listing, and GMP-compliant manufacturing practices akin to pharmaceutical production facilities. Currently, there are 93,503 B facilities registered with the FDA as of September 2025, with the law allowing 503Bs to begin compounding and shipping medications after registration and listing. However, unlike commercial manufacturers, 503B compounders are not required to be inspected first or to show regulators that they are capable of safely making the medicines they ship to patients. This inspection delay continues even after facilities' initial start-up periods, with 39 of the 48 503Bs newly registered since June 2021 having never been inspected by FDA staff, including 36 sites that indicate an intention to compound sterile drugs (*Registered Outsourcing Facilities*, 2025).



Sources:

- FDA CQA annual reports (FY2020-FY2024 counts are as of Sept 30 each year).
- FY2025 = 93 (as of Jul 16, 2025), counted from FDA's Registered Outsourcing Facilities roster; matches SafeMedicines' independent tally.

Figure 1. Approved 503B Outsourcing Facilities in the USA from FY 2020 to FY 2025

3 Objective and Scope of the Paper

This paper aims to provide a comprehensive analysis of artificial intelligence applications in sterile compounding and 503B outsourcing facilities, with particular emphasis on enhancing quality, safety, and throughput while addressing critical challenges in data integrity, validation, and regulatory compliance. The scope encompasses current state assessment, emerging AI technologies, implementation challenges, and future opportunities within the regulatory framework governing sterile pharmaceutical manufacturing. The primary objectives include examining the current landscape of AI implementation in sterile compounding environments, analyzing specific AI applications such as robotics for aseptic processing, real-time quality monitoring, predictive maintenance, and regulatory intelligence systems. Additionally, this paper addresses the critical challenges of ensuring data integrity in AI-enabled systems and establishing compliance-by-design strategies that integrate regulatory requirements into AI system architecture from the outset.

4 Literature Review

Current State of Sterile Compounding and 503B Facilities

The sterile compounding landscape has evolved significantly since the establishment of 503B outsourcing facilities under the Drug Quality and Security Act. These facilities operate under manufacturer-level expectations, requiring cleanrooms that deliver particle and microbial control with verifiable, repeatable, and documented performance (Gianturco & Mattingly, 2021). The regulatory framework demands ISO-classified cleanrooms for sterile drug production, with design, operation, and monitoring scrutinized by regulators (Gianturco et al., 2021). Recent regulatory developments indicate increased scrutiny of 503B facilities. The FDA's inspection patterns show significant delays, with many newly registered facilities operating without initial inspections, raising concerns about patient safety and regulatory oversight (Grandinetti et al., 2025). This inspection lag is particularly concerning for facilities producing sterile injectables or implantables, where contamination risks pose serious patient safety threats (Palumbo et al., 2016).

Applications of Robotics and Automation in Pharmaceutical Manufacturing

The pharmaceutical industry has witnessed substantial advancement in robotic applications across the production chain, from API manufacturing to final packaging, with particular emphasis on aseptic environments. Robot applications in pharmaceutical manufacturing involve filling operations where the benefits of automation and robotics relate primarily to health, safety, environment, quality, and production efficiency. In aseptic environments, robots offer advantages by following defined standard operating procedures perfectly within the GMP scope, reducing human error risks. Robots significantly reduce the impact of non-ergonomic or risky operations, preventing operators from performing repeated operations and exposure to highly potent compounds, especially during cleaning and decontamination procedures. Moreover, robots avoid the continuous presence of operators who represent a major contamination risk in pharmaceutical environments, thus increasing production quality and safety while significantly lowering contamination risk. Modern robotic systems demonstrate remarkable capabilities in pharmaceutical manufacturing. Flexible machines and robotics are essential for next-generation aseptic production, offering multi-axis movement, real-time adaptability, and enhanced precision in handling diverse container formats (Tanzini et al., 2023). These systems must process different primary packaging types—vials, syringes, and cartridges—delivered in various configurations while enabling rapid format changes with minimal manual intervention.

AI in Quality Control and Assurance

AI-powered quality control systems represent a paradigm shift from traditional manual inspection processes to automated, real-time monitoring capabilities. Within pharmaceutical manufacturing, AI-powered algorithms leverage real-time data from equipment sensors to monitor critical metrics, enabling continuous quality assurance and predictive quality management. These systems can detect even minor drug deviations and defects that human inspectors might overlook, ensuring higher consistency in product quality and delivery of more stable and effective medications. Real-time quality monitoring utilizes IoT-enabled sensors and AI algorithms to continuously track manufacturing parameters (Jain, 2024). Johnson & Johnson employs IoT-enabled sensors to continuously monitor temperature and air quality in manufacturing facilities, with AI algorithms analyzing real-time data to identify early signs of process deviation. This enables speedy operational adjustments to ensure product quality and consistency. Similarly, Boehringer Ingelheim has implemented AI-driven vision inspection systems throughout production lines to detect packaging defects, reducing human error and accelerating product inspection while ensuring higher quality through strict regulatory compliance. Predictive analytics capabilities extend beyond real-time monitoring to forecast potential quality issues. Pfizer utilizes predictive analytics and real-time monitoring in vaccine manufacturing, with IoT enabled sensors collecting data on equipment performance and environmental conditions, analyzed by AI models to predict potential malfunctions or deviations. This proactive approach enables timely adjustments to prevent downtimes and ensures consistent vaccine quality (Kodumuru et al., 2025).

Regulatory Landscape: FDA cGMP and AI Guidance

The regulatory landscape governing AI in pharmaceutical manufacturing continues to evolve rapidly, with the FDA taking an increasingly proactive approach to establishing frameworks for AI validation and compliance (Niazi, 2025). The FDA's recent draft guidance "Considerations for the Use of Artificial Intelligence to Support Regulatory Decision-Making for Drug and Biological Products" introduces a comprehensive risk-based credibility assessment framework. This framework emphasizes the importance of clearly defined context of use for each AI model, forming the basis for model evaluation and regulatory acceptance. The seven-step risk-based approach includes defining the question of interest, establishing the context of use for the AI model, assessing AI model risk, developing a credibility establishment plan, executing the plan, documenting results and discussing deviations, and determining model adequacy for the intended use. The guidance emphasizes continuous monitoring and maintenance of AI models to ensure reliability throughout their operational lifecycle, including regular performance assessment and documentation of changes affecting model output (n.d.) (Nene et al., 2024). Recent FDA guidance documents represent an initial attempt to address novel challenges in AI implementation while highlighting the delicate balance between fostering innovation and ensuring public safety. Both guidance documents take risk-averse approaches, prioritizing safety and efficacy of products through thorough validation and documentation requirements to reduce bias, increase transparency, and address obstacles related to AI technologies.

5 AI Applications in Sterile Compounding

The integration of artificial intelligence into sterile compounding and 503B outsourcing facilities presents unprecedented opportunities for enhancing operational efficiency, product quality, and patient safety. AI technologies demonstrate particular promise in addressing the complex challenges inherent in aseptic processing environments where contamination risks must be minimized while maintaining high throughput and consistent quality standards (Choudhury & Asan, 2020). AI-driven robotics for aseptic processing represents a transformative approach to sterile compounding. Robotics in aseptic pharmaceutical manufacturing is a growing field with the potential to enhance patient safety by reducing contamination risks, responding to regulatory compliance requirements, improving operational efficiency, boosting competitiveness through technological innovation, and supporting better waste management and sustainability practices. The primary advantage of incorporating robotics into aseptic manufacturing is the significant reduction of human intervention, which is the greatest contamination risk to aseptic product safety. By minimizing human contact, robotics enhances sterility and consistency in production processes. Modern pharmaceutical companies have already demonstrated successful implementation of AI-enhanced robotics in sterile manufacturing. GSK has implemented advanced robotics within its aseptic processing lines, using automated filling systems combined with isolators to achieve enhanced sterility assurance, minimized human intervention, and strengthened compliance with GMP standards. Similarly, Sanofi's fully automated modular filling line uses robotics to handle vials and syringes, with the integration of automation and isolator technology improving efficiency, reducing contamination risks, and ensuring robust quality control.

Real-time quality monitoring and predictive analytics represent another critical area where AI demonstrates significant potential. AI-powered systems can analyze copious data in real time, far outstripping the capabilities of human analysts, enabling the detection of anomalies and deviations almost instantly (Okuyelu & Adaji, 2024). In pharmaceutical manufacturing, AI can analyze information from sensors on machinery and equipment, enabling timely detection of abnormalities, reducing waste, and minimizing the need for rework. These AI systems are more accurate compared to human operators in timely defect detection and can forecast equipment failure through lessons drawn from past data.

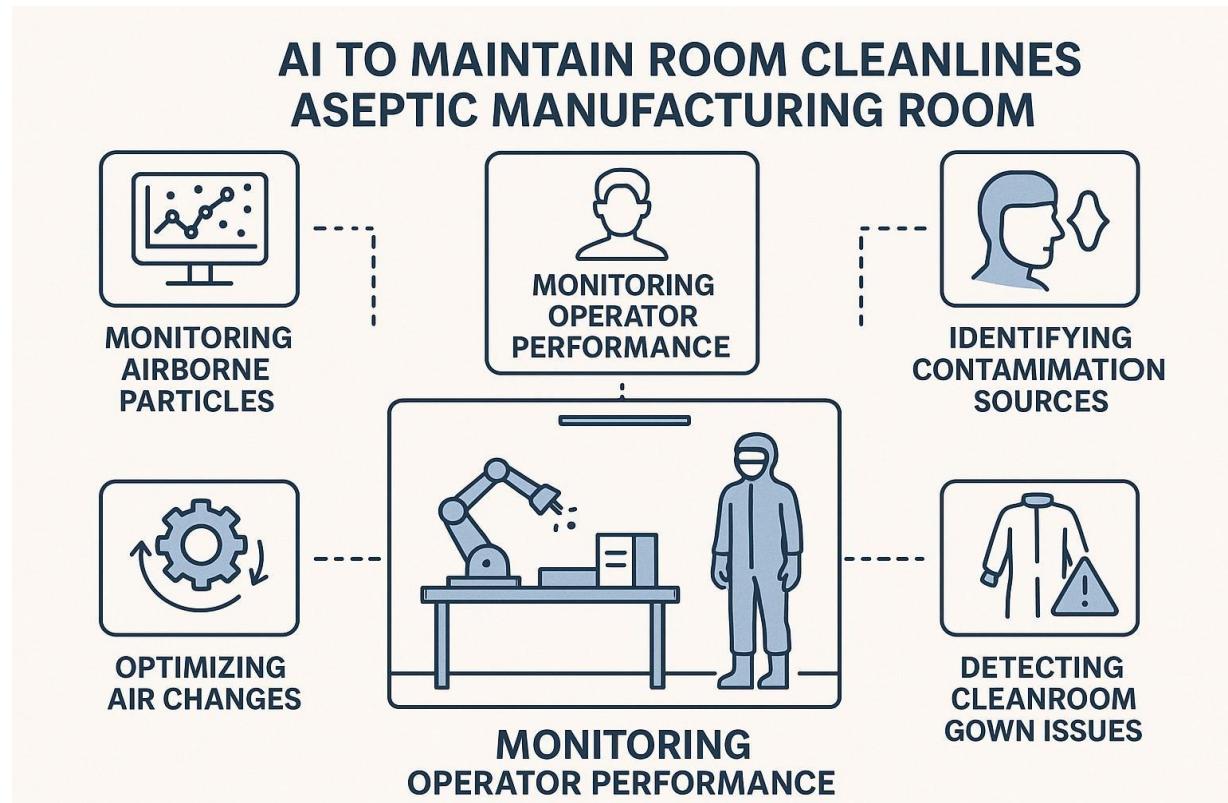


Figure 2. Applications of AI in Aseptic Manufacturing Rooms

AI-Driven Robotics for Aseptic Processing

AI-driven robotics represent the most transformative technology for aseptic processing in sterile compounding environments, offering unprecedented capabilities for contamination reduction, precision enhancement, and operational efficiency (Wah, 2025). The integration of artificial intelligence with robotic systems enables adaptive responses to dynamic manufacturing conditions while maintaining strict adherence to aseptic protocols. These systems utilize machine learning algorithms to optimize movement patterns, predict maintenance needs, and adapt to variations in container formats and processing requirements. Modern AI-enabled robotic systems demonstrate remarkable capabilities in pharmaceutical aseptic processing (Tanzini et al., 2023). The European Commission Annex 1 Guideline specifically states that "where possible, the use of equipment such as RABS, isolators, or other systems, should be considered to reduce the need for critical interventions into grade A and to minimize contamination risk. Robotics and automation of processes can also be considered to eliminate direct human critical interventions". This regulatory endorsement underscores the recognition of robotics as a critical technology for maintaining sterility in pharmaceutical manufacturing. Practical implementation of AI-driven robotics in sterile compounding has demonstrated significant benefits. Advanced robotic capabilities include multi-axis movement systems that enable precise manipulation of sterile containers, real-time adaptability to varying product specifications, and integrated quality control through vision systems and sensor feedback. These systems can process different primary packaging types, including vials, syringes, and cartridges, while enabling rapid format changes with minimal manual intervention. The flexibility supports smaller batch production and accelerates production timelines while maintaining stringent contamination control.

Real-Time Quality Monitoring and Anomaly Detection

AI-powered quality systems transform traditional reactive quality control approaches into proactive, real-time monitoring capabilities that enable immediate detection and correction of deviations. These systems

leverage machine learning algorithms to analyze continuous data streams from multiple sensors, identifying patterns and anomalies that indicate potential quality issues before they impact product integrity. The transition from periodic quality control based on human operators' inference to continuous AI-driven monitoring represents a fundamental paradigm shift in pharmaceutical quality assurance. Real-time anomaly detection capabilities represent one of AI's most powerful applications in sterile compounding. AI systems can continuously monitor compliance data for irregularities or deviations from established standards, instantly detecting out-of-specification results in drug manufacturing, identifying improper handling in distribution channels, or flagging discrepancies in production data. When an issue is detected, the system immediately alerts quality personnel, enabling rapid corrective action before problems escalate. This shift from retrospective audits to real-time monitoring drastically reduces quality risks and ensures swift intervention (Huanbutta et al., 2024). Predictive quality analytics extend beyond current issue identification to forecast future quality risks based on historical data and patterns. AI systems analyze trends in quality performance to forecast potential non-compliance areas, allowing facilities to implement preventive measures. For instance, AI can predict when equipment might fail or when specific processes are likely to deviate from regulatory standards, providing the foresight needed to maintain quality continuously. This predictive capability enables proactive quality management rather than reactive problem-solving (Patil, 2024). Implementation examples demonstrate the practical benefits of AI-driven quality monitoring. Integrated vision systems at pharmaceutical packaging stages use automated systems to ensure every tablet is free of defects like cracks and size or shape inconsistencies. These systems integrate AI in Quality Systems: Real-Time Monitoring and Anomaly Detection with feedback loops enabling real-time process adjustments to rectify identified problems. Real-time monitoring of aseptic area environments provides effective GMP criteria achievement through continuous temperature and air quality tracking. IoT sensors measure vital process parameters such as speed and pressure, using AI algorithms to predict mixture consistency during blending processes, with immediate system adjustments maintaining product uniformity when inconsistencies are detected.

AI for Regulatory Intelligence and Compliance Management

AI-powered regulatory intelligence systems provide pharmaceutical facilities with automated monitoring, analysis, and compliance management capabilities that address the complex and ever-changing regulatory landscape governing sterile compounding. These systems utilize natural language processing and machine learning algorithms to continuously monitor regulatory updates, analyze compliance requirements, and provide actionable insights for maintaining adherence to applicable standards (Patil, 2024). The automation of regulatory intelligence reduces manual monitoring burden while ensuring comprehensive coverage of relevant regulatory changes. Automated compliance monitoring represents a core application of AI in regulatory management. AI-powered platforms automatically collect data from various sources, including manufacturing lines, quality control systems, and environmental monitoring networks, integrating information into cohesive compliance management systems. This eliminates manual data entry and cross-checking requirements, significantly reducing human error likelihood while ensuring compliance teams have access to current information for informed decision-making. Real-time compliance monitoring capabilities enable immediate identification of potential regulatory violations. AI systems continuously analyze operational data against regulatory requirements, automatically flagging deviations that could result in compliance issues. For example, AI can detect environmental excursions in cleanroom facilities, identify process deviations from validated parameters, or flag documentation deficiencies that could impact regulatory compliance. This proactive approach enables immediate corrective action before minor issues escalate into significant compliance problems. Regulatory intelligence dashboards provide personalized, role-based information delivery that ensures relevant regulatory updates reach appropriate personnel. These systems focus on delivering actionable insights rather than raw data, enabling regulatory professionals to make informed decisions about compliance requirements and necessary operational adjustments. Predictive compliance analytics utilize AI algorithms to analyze historical data and forecast future compliance trends. These tools monitor risk profiles and regulatory changes, enabling organizations to address potential issues preemptively (Garcia-Segura, 2024). AI can detect anomalies in operational data, alerting compliance teams to possible regulatory breaches early in their development. This predictive capability transforms compliance from a

reactive process to a proactive strategic function that prevents problems rather than responding to violations after they occur.

6 Implementation Challenges

The implementation of AI in sterile compounding and 503B facilities faces significant challenges related to data integrity, system validation, and regulatory compliance. Data integrity represents the linchpin of pharmaceutical manufacturing under current Good Manufacturing Practices (cGMP), ensuring that data generated throughout the manufacturing process is accurate, reliable, and secure. In the context of AI systems, maintaining data integrity becomes increasingly complex due to the volume and variety of data sources, the dynamic nature of AI algorithms, and the need for continuous monitoring and validation. Common challenges in achieving data integrity in AI-enabled cGMP compliance include insufficient training of personnel on data integrity principles and AI system management, manual data entry susceptibility to human errors, and inadequate documentation practices. Poor recordkeeping practices can result in missing or incomplete data, making it impossible to verify the manufacturing process's accuracy and compliance with cGMP standards. The FDA considers data integrity to be critical throughout cGMP to ensure product quality and public safety, with an increased number of data integrity violations leading to warning letters, import alerts, and consent decrees. AI system validation presents unique challenges in pharmaceutical environments. The FDA's recent guidance on AI in drug development introduces a risk-based credibility assessment framework for determining the credibility of an AI model within a context of use. This framework emphasizes contextual risk evaluation for decision-making and outlines a seven-step process beginning with defining the fundamental question an AI model aims to address and establishing its specific context of use. The process continues through assessing AI model risk, establishing AI model credibility, and culminating in a final determination of the model's adequacy for its intended purpose. Regulatory compliance challenges are particularly acute for AI systems in pharmaceutical manufacturing. These systems face scrutiny regarding inadequate visibility and control over potentially malicious, drifted, or poisoned AI tools, security vulnerabilities that pose significant risks to sensitive pharmaceutical data, and the complex task of ensuring compliance with regulatory standards and ethical guidelines in AI application development and deployment. The trust gap in AI implementation presents a critical barrier to achieving widespread AI adoption in the pharmaceutical industry, where regulatory compliance is paramount, and the stakes are exceptionally high.

Data Integrity Challenges

Data Integrity Principles in Pharmaceutical Manufacturing

Data integrity principles form the foundation of pharmaceutical manufacturing compliance, with particular importance in AI-enabled systems where data volume, velocity, and variety create new challenges (Schwabe et al., 2024). Data integrity encapsulates the reliability, validity, authenticity, and trustworthiness of information submitted for regulatory assessment. Any doubts about data credibility in regulatory documentation trigger concerns about operational compliance and control within medical product manufacturing ecosystems. The FDA's Final Guidance on Data Integrity and Compliance with Drug cGMP emphasizes that data integrity is critical throughout current Good Manufacturing Practice to ensure product quality and public safety. The guidance defines data integrity as a complete, consistent, and accurate recording of data, requiring original or true copies of contemporaneously recorded data that is attributable, legible, and accurate. Management with executive responsibility must create a quality culture where employees understand data integrity and are encouraged to identify and promptly report data integrity issues.

Best practices for maintaining data integrity in AI-enabled systems include implementing risk-based approaches to prioritize validation efforts, conducting routine audits and reviews of systems, processes, policies, and procedures to identify deficiencies, and providing regular personnel training on data integrity and cGMP practices with thorough validation process documentation. These practices become increasingly critical as AI systems generate vast amounts of data requiring careful governance and validation to ensure regulatory compliance.

Ensuring Data Accuracy, Completeness, and Consistency

Data integrity in AI-enabled sterile compounding systems presents unique challenges that extend beyond traditional pharmaceutical manufacturing environments. The volume, velocity, and variety of data generated by AI systems require sophisticated approaches to ensure accuracy, completeness, and consistency throughout the data lifecycle. AI systems in pharmaceutical manufacturing generate continuous streams of data from multiple sources, including sensors, vision systems, robotic controllers, and environmental monitors, creating unprecedented data management complexity that demands robust governance frameworks. Data accuracy challenges in AI systems stem from multiple sources, including sensor calibration drift, algorithmic bias, and data preprocessing errors. AI algorithms trained on historical data may perpetuate inaccuracies or biases present in training datasets, leading to systematic errors in quality assessments or process control decisions. Ensuring data accuracy requires comprehensive validation of data sources, regular algorithm performance monitoring, and implementation of data quality checks throughout the AI system lifecycle. These validation processes must account for the dynamic nature of AI algorithms that may adapt and change based on new data inputs. Data completeness presents particular challenges in AI systems where missing or incomplete data can significantly impact algorithm performance and decision-making capabilities (Ajuzieogu, 2024; Myllyaho et al., 2021). Traditional quality control systems may function adequately with periodic data collection, but AI systems require continuous, complete data streams to maintain accuracy and reliability. Incomplete data can lead to incorrect predictions, missed anomaly detection, or inappropriate process adjustments that could compromise product quality or patient safety. Robust data governance must include mechanisms for detecting and addressing data gaps while ensuring AI systems can function reliably even with occasional data interruptions. Data consistency across multiple systems and data sources represents another critical challenge in AI-enabled pharmaceutical manufacturing. Sterile compounding facilities typically utilize multiple interconnected systems, including environmental monitoring, equipment control, quality management, and batch manufacturing execution systems. Ensuring consistent data formats, timestamps, and measurement units across these systems is essential for effective AI algorithm performance. Inconsistent data can lead to algorithm confusion, incorrect correlations, and flawed decision-making that could impact product quality or regulatory compliance.

Data Governance and Metadata Management

Effective data governance provides the foundation for successful AI implementation in sterile compounding facilities, encompassing policies, procedures, and technical controls that ensure data quality, security, and compliance throughout the AI system lifecycle. Data governance frameworks must address the unique challenges posed by AI systems, including the need for continuous data quality monitoring, algorithm transparency, and audit trail maintenance (Myllyaho et al., 2021). These frameworks must balance the operational requirements of AI systems with the regulatory expectations for pharmaceutical manufacturing data management. Data Integrity Challenges: Ensuring Data Accuracy, Completeness, and Consistency. Data Governance and Metadata Management. Metadata management becomes critically important in AI systems where understanding data context, provenance, and transformation history is essential for regulatory compliance and system validation (Yang et al., 2025). Metadata provides information about data sources, collection methods, processing algorithms, and quality assessments that enable regulatory authorities to evaluate AI system credibility. Comprehensive metadata management must include documentation of data lineage, algorithm versioning, model training parameters, and performance metrics that demonstrate AI system reliability and regulatory compliance. Data lineage tracking presents unique challenges in AI systems where data may undergo multiple transformations, aggregations, and analyses before contributing to final decisions. Maintaining complete audit trails of data flow through AI algorithms requires sophisticated tracking mechanisms that can document every step in the data processing pipeline (Kalokyri et al., 2025). This documentation must be sufficient to enable reconstruction of decision-making processes for regulatory inspection and investigation purposes while providing the transparency necessary for algorithm validation and performance assessment. Role-based access controls and data security measures must accommodate the unique requirements of AI systems while maintaining pharmaceutical manufacturing security standards

(Pantanowitz et al., 2024). AI systems may require access to large volumes of historical data for training and validation purposes, creating challenges for traditional access control mechanisms. Data governance frameworks must balance AI system operational requirements with security needs, ensuring appropriate personnel have necessary access while preventing unauthorized data exposure or manipulation that could compromise system integrity or regulatory compliance.

Audit Trails and Data Security

Audit trail requirements for AI-enabled systems in pharmaceutical manufacturing extend beyond traditional data logging to encompass algorithm decision-making processes, model updates, and system performance monitoring (Kuthuru, 2025). The FDA's guidance on data integrity emphasizes that audit trails must provide a comprehensive record of data creation, modification, and deletion activities. For AI systems, this includes logging of algorithm inputs, outputs, decision rationale, and confidence levels that enable reconstruction of automated decisions for regulatory review and investigation purposes. AI system audit trails must capture not only data transactions but also algorithm behavior, model updates, and system configuration changes that could impact product quality or patient safety. Traditional audit trail systems may not adequately capture the complex interactions within AI algorithms, requiring enhanced logging capabilities that document algorithm decision-making processes. These audit trails must be designed to provide sufficient detail for regulatory inspection while remaining manageable from a data storage and analysis perspective (Jiang & Cao, 2011). Data security challenges in AI systems include protecting proprietary algorithms, preventing data poisoning attacks, and ensuring system availability for critical manufacturing processes. AI systems may be vulnerable to adversarial attacks that manipulate input data to cause incorrect algorithmic decisions, potentially compromising product quality or safety. Security frameworks must include measures to detect and prevent such attacks while maintaining system performance and availability for critical manufacturing operations. Audit Trails and Data Security Cybersecurity considerations for AI systems must address the increased attack surface created by connected sensors, cloud computing platforms, and remote monitoring capabilities. The integration of IoT devices and cloud-based AI services creates new vulnerabilities that could be exploited to compromise manufacturing operations or steal sensitive data. Comprehensive cybersecurity frameworks must include network segmentation, encryption, intrusion detection, and incident response capabilities specifically designed for AI-enabled pharmaceutical manufacturing environments (Mazhar et al., 2023).

Validation Challenges

Risk-Based Validation Approach

Risk-based validation of AI systems in sterile compounding requires a systematic approach that considers the unique characteristics of artificial intelligence algorithms, including their adaptive nature, complexity, and potential impact on product quality and patient safety (Mahmood et al., 2024). The FDA's risk-based credibility assessment framework provides a structured methodology for evaluating AI system reliability and Strategies for Data Integrity Remediation and Validation of AI Systems Risk-Based Validation Approach trustworthiness within specific contexts of use. This framework emphasizes the importance of clearly defining the AI model's intended function, scope, and regulatory impact before designing appropriate validation strategies.

The seven-step risk-based approach begins with defining the question of interest that the AI model aims to address, followed by establishing the specific context of use, including the intended application, user population, and regulatory implications. Risk assessment considers factors such as the complexity of the AI model, quality and representativeness of training data, potential for algorithmic bias, and consequences of incorrect decisions on product quality or patient safety. This risk assessment guides the development of validation plans that are proportionate to the identified risks while ensuring adequate demonstration of system reliability. The context of use definition is critical for AI system validation as it establishes the boundaries within which the system must demonstrate acceptable performance. The context includes specific manufacturing processes, product types, environmental conditions, and operational scenarios where the AI system will be deployed. Clear context definition enables appropriate selection of validation datasets, test scenarios, and acceptance criteria that reflect real-world operating conditions. This definition must be

sufficiently detailed to guide validation activities while remaining flexible enough to accommodate reasonable variations in operational conditions. Validation planning for AI systems must address both technical performance and regulatory compliance requirements, considering the dynamic nature of AI algorithms that may adapt based on new data inputs. Validation plans must include strategies for ongoing performance monitoring, algorithm change control, and periodic revalidation to ensure continued system reliability. These plans must balance the need for thorough validation with practical considerations of resource availability and operational requirements in pharmaceutical manufacturing environments.

Performance Monitoring and Continuous Improvement

Continuous performance monitoring of AI systems in pharmaceutical manufacturing requires real-time assessment of algorithm accuracy, reliability, and compliance with established performance criteria (Rajesh & Elumalai, 2025). Performance monitoring systems must track key metrics, including prediction accuracy, false positive and false negative rates, system availability, and response times that impact manufacturing operations. These monitoring systems must provide immediate alerts when performance degrades below acceptable levels while maintaining comprehensive historical records for trend analysis and regulatory reporting. Drift detection represents a critical aspect of AI system monitoring, addressing the tendency of algorithm performance to degrade over time as operational conditions change or new data patterns emerge. Data drift occurs when input data characteristics change from training conditions, while concept drift involves changes in the relationships between inputs and outputs that can impact algorithm accuracy (Rajesh & Elumalai, 2025). Monitoring systems must detect both types of drift early to enable appropriate corrective actions before system performance impacts product quality or manufacturing operations. Model retraining and updates require careful change control processes that balance the need for improved performance with regulatory requirements for system validation and documentation. Algorithm updates may improve performance by incorporating new data or addressing identified biases, but they also introduce risks of unintended consequences or degraded performance in other areas. Change control processes must include impact assessment, validation testing, and documentation requirements that ensure algorithm updates enhance rather than compromise system reliability and regulatory compliance. Performance trending and analytics enable proactive identification of system improvement opportunities while demonstrating continued compliance with validation criteria. Trend analysis can identify gradual performance degradation, seasonal variations, or operational factors that impact algorithm accuracy. This analysis supports both immediate corrective actions and long-term system improvement initiatives that enhance AI system reliability and effectiveness while maintaining regulatory compliance.

7 Strategies for Successful Implementation

Compliance-by-Design Framework

Compliance-by-design represents a proactive approach to AI system development that embeds regulatory requirements and quality standards into system architecture from the earliest design phases. This approach contrasts with traditional compliance strategies that retrofit regulatory requirements onto existing systems, potentially creating inefficiencies and compliance gaps. In pharmaceutical manufacturing, compliance-by-design is particularly critical due to the stringent regulatory environment and the potential patient safety implications of system failures or non-compliance (Pantanowitz et al., 2024).

The foundation of compliance-by-design lies in a comprehensive understanding of applicable regulatory requirements and their translation into technical specifications for AI system components (Prifti et al., 2024). This includes FDA cGMP requirements, data integrity principles, quality system regulations, and specific guidance for AI applications in pharmaceutical manufacturing. Design teams must translate these regulatory requirements into technical specifications for data management, algorithm development, system integration, and performance monitoring that ensure compliance throughout the system lifecycle.

System architecture design must incorporate regulatory requirements as fundamental design constraints rather than optional features to be added later. This includes implementing appropriate access controls, audit trail capabilities, data integrity controls, and validation frameworks that support ongoing compliance demonstration. Architecture decisions must consider the interconnected nature of AI systems, where compliance failures in one component can impact entire manufacturing processes and regulatory standing. Quality-by-design principles apply to AI system development through systematic approaches that build quality and compliance into every aspect of system design and operation. This includes utilizing design controls, risk management principles, and validation frameworks that ensure AI systems meet their intended purpose while complying with regulatory requirements (Aksu et al., 2012; Pereira et al., 2025). Quality-by-design approaches must account for the unique characteristics of AI systems, including their adaptive nature and the complexity of algorithm validation and performance monitoring.

Designing for Data Integrity and Security

Data integrity and security design requirements for AI systems in pharmaceutical manufacturing must address both traditional IT security concerns and unique challenges posed by artificial intelligence algorithms and large-scale data processing (Pasas-Farmer & Jain, 2025). Design frameworks must incorporate data integrity principles from the earliest system conceptualization through implementation and ongoing operation. This includes implementing technical controls for data accuracy, completeness, consistency, and security that function effectively within the complex AI system architecture. Technical controls for data integrity must be embedded throughout the AI system architecture, including data collection, processing, storage, and analysis components. These controls must ensure that data maintains its integrity throughout complex processing pipelines that may include multiple transformation, aggregation, and analysis steps. Design approaches must include automated data quality checks, integrity validation procedures, and error detection mechanisms that operate continuously without impacting system performance or manufacturing operations.

Security-by-design principles must address the expanded attack surface created by AI systems, including cloud computing platforms, IoT devices, network communications, and algorithm vulnerabilities. Security architecture must include network segmentation, encryption, access controls, and monitoring capabilities specifically designed for AI-enabled pharmaceutical manufacturing environments. These security measures must protect against both traditional cybersecurity threats and AI-specific attacks such as data poisoning, adversarial inputs, and model extraction that could compromise manufacturing operations or data integrity (Sembiring & Novagusda, 2023). Data governance frameworks integrated into system design must provide clear roles, responsibilities, and procedures for data management throughout the AI system lifecycle. This includes data classification schemes, retention policies, access control matrices, and change management procedures that ensure appropriate data handling while supporting operational requirements (Pahune et al., 2025).

Ensuring Traceability and Accountability

Traceability and accountability requirements for AI systems in pharmaceutical manufacturing extend beyond traditional audit trail concepts to encompass algorithm decision-making processes, model evolution, and system performance tracking. Design frameworks must provide complete visibility into AI system operations, including data inputs, processing decisions, output generation, and system modifications that could impact product quality or regulatory compliance (Tsopra et al., 2021). This traceability must be maintained throughout the system lifecycle while remaining accessible for regulatory inspection and internal quality management activities. Algorithm transparency presents unique challenges in AI system design, where complex machine learning models may make decisions through processes that are difficult to interpret or explain. Design approaches must balance the need for algorithm sophistication with requirements for explainability and transparency that enable regulatory review and operational oversight. This may include implementing interpretable AI techniques, decision support tools, or hybrid approaches that combine AI automation with human oversight for critical decisions. Decision audit trails for AI systems must capture not only final outputs but also the reasoning processes, confidence levels, and alternative options considered during automated decision-making (Singh et al., 2025). These audit trails must provide sufficient detail for regulatory investigators to understand and evaluate AI system decisions while remaining manageable from

a data storage and analysis perspective. Audit trail design must consider the high-frequency nature of AI decisions in manufacturing environments where thousands of automated decisions may occur during a single batch production. Accountability frameworks must clearly define roles and responsibilities for AI system decisions, performance monitoring, and corrective actions when systems fail to meet established criteria. This includes defining escalation procedures for system failures, performance degradation, or compliance issues that require human intervention. Accountability frameworks must address the shared responsibility between AI systems and human operators while ensuring that appropriate oversight and control mechanisms prevent system failures from impacting product quality or patient safety.

8 Conclusion and Future Directions

The future of AI in sterile compounding and 503B outsourcing facilities will be shaped by advancing technology capabilities, evolving regulatory frameworks, and increasing industry acceptance of AI applications in pharmaceutical manufacturing. Several key trends are emerging that will significantly impact how AI systems are developed, validated, and implemented in sterile manufacturing environments over the coming years. Advances in explainable AI will address current limitations in algorithm transparency and regulatory acceptance, enabling more sophisticated AI applications in critical manufacturing processes. These developments will provide a better understanding of AI decision-making processes while maintaining algorithm sophistication and performance. Enhanced explainability will facilitate regulatory acceptance and operational confidence in AI systems while supporting validation and compliance activities. Integration of AI with advanced manufacturing technologies, including continuous manufacturing, process analytical technology, and advanced process control, will create comprehensive manufacturing intelligence systems that optimize entire production workflows. These integrated systems will provide unprecedented visibility into manufacturing processes while enabling real-time optimization that improves quality, efficiency, and compliance (Bhat et al., 2025). The convergence of these technologies will transform pharmaceutical manufacturing from reactive process management to proactive, predictive manufacturing excellence. Regulatory harmonization and standardization of AI validation requirements will reduce implementation barriers and provide clearer guidance for AI system development and deployment. International coordination of AI regulatory frameworks will enable more efficient global implementation while reducing duplicative validation activities. Standardization efforts will provide clearer expectations for AI system validation while supporting innovation through reduced regulatory uncertainty. Cloud-based AI platforms and AI-as-a-Service offerings will democratize access to sophisticated AI capabilities for smaller organizations that cannot justify large internal AI development investments (Syed et al., 2025). These platforms will provide validated, compliant AI solutions that can be rapidly deployed while reducing implementation costs and technical barriers. The availability of specialized pharmaceutical AI services will accelerate adoption across the industry while ensuring compliance with regulatory requirements. Collaborative AI development initiatives between pharmaceutical companies, technology vendors, and regulatory agencies will accelerate advancement of AI applications while ensuring regulatory alignment and industry standardization. These collaborations will share development costs and risks while creating industry-wide standards that benefit all participants. Collaborative approaches will also facilitate regulatory engagement and acceptance by providing regulators with direct input into the development and validation of AI systems.

Acknowledgments

We are grateful to two anonymous reviewers for their valuable comments on the earlier version of this paper.

References

Ajuzieogu, U. (2024). *AI data quality and bias: Challenges, implications, and solutions in modern machine learning*.

Aksu, B., Paradkar, A., de Matas, M., Özer, Ö., Güneri, T., & York, P. (2012). Quality by design approach: application of artificial intelligence techniques of tablets manufactured by direct compression. *AAPS PharmSciTech*, 13(4), 1138-1146.

Bhat, V. N., Bharati, S., Bothiraja, C., Sangshetti, J., & Gaikwad, V. (2025). A Review on Intervention of AI in Pharmaceutical Sector: Revolutionizing Drug Discovery and Manufacturing. *Intelligent Pharmacy*. <https://doi.org/10.1016/j.ipha.2025.04.001>

Choudhury, A., & Asan, O. (2020). Role of artificial intelligence in patient safety outcomes: systematic literature review. *JMIR medical informatics*, 8(7), e18599.

Gabay, M. (2014). The drug quality and security act. *Hospital Pharmacy*, 49(7), 615-676.

Garcia-Segura, L. A. (2024). The role of artificial intelligence in preventing corporate crime. *Journal of Economic Criminology*, 5, 100091. <https://doi.org/10.1016/j.jeconc.2024.100091>

Gianturco, S. L., & Mattingly, A. N. (2021). Distinguishing between compounding facilities and the development of the 503B bulk drug substance list. *Journal of the American Pharmacists Association*, 61(1), e8-e11. <https://doi.org/10.1016/j.japh.2020.06.024>

Gianturco, S. L., Yoon, S., Yuen, M. V., & Mattingly, A. N. (2021). Outsourcing facilities and their place in the US drug supply chain. *Journal of the American Pharmacists Association*, 61(1), e99-e102. <https://doi.org/10.1016/j.japh.2020.07.021>

Grandinetti, C., Rivera, D. R., Pai-Scherf, L., Choe, A., Kluetz, P. G., Kraus, S., Innes, G. K., & Ayalew, K. (2025). Keeping the end in mind: Reviewing U.S. FDA inspections of submissions including real-world data. *Therapeutic Innovation & Regulatory Science*, 59(5), 956-962.

Huanbutta, K., Burapapadth, K., Kraisit, P., Sriamornsak, P., Ganokratanaa, T., Suwanpitak, K., & Sangnim, T. (2024). Artificial intelligence-driven pharmaceutical industry: A paradigm shift in drug discovery, formulation development, manufacturing, quality control, and post-market surveillance. *European Journal of Pharmaceutical Sciences*, 203, 106938. <https://doi.org/10.1016/j.ejps.2024.106938>

Jain, D. (2024). Artificial intelligence in quality control systems: A cross-industry analysis of applications, benefits, and implementation frameworks. *International Journal of Scientific Research in Computer Science, Engineering and Information Technology*, 10(6), 1321-1333.

Jiang, K., & Cao, X. (2011). Design and implementation of an audit trail in compliance with US regulations. *Clinical Trials (London, England)*, 8(5), 624-633.

Kalokyri, V., Tachos, N. S., Kalantzopoulos, C. N., Sfakianakis, S., Kondylakis, H., Zaridis, D. I., ... & Tsiknakis, M. (2025). AI Model Passport: Data and System Traceability Framework for Transparent AI in Health. *arXiv preprint arXiv:2506.22358*.

Kodumuru, R., Sarkar, S., Parepally, V., & Chandarana, J. (2025). Artificial intelligence and internet of things integration in pharmaceutical manufacturing: A smart synergy. *Pharmaceutics*, 17(3), 290.

Kuthuru, A. (2025). Pharmaceutical research databases: Balancing AI innovation with regulatory compliance. *Journal of Computer Science and Technology Studies*, 7(4), 822-828.

Mahmood, U., Shukla-Dave, A., Chan, H. P., Drukker, K., Samala, R. K., Chen, Q., ... & Hadjiiski, L. (2024). Artificial intelligence in medicine: mitigating risks and maximizing benefits via quality assurance, quality control, and acceptance testing. *BJR/ Artificial Intelligence*, 1(1), ubae003.

Mazhar, T., Talpur, D. B., Shloul, T. A., Ghadi, Y. Y., Haq, I., Ullah, I., ... & Hamam, H. (2023). Analysis of IoT security challenges and its solutions using artificial intelligence. *Brain sciences*, 13(4), 683.

Myllyaho, L., Raatikainen, M., Männistö, T., Mikkonen, T., & Nurminen, J. K. (2021). Systematic literature review of validation methods for AI systems. *arXiv preprint arXiv:2107.12190*.

Naim, A., Muniasamy, A., Khan, M. I., & Khan, M. F. (2026). AI-driven smart manufacturing and automation in pharmaceutical production. In *Applications of artificial intelligence in pharmaceuticals* (pp. 157-194). IGI Global Scientific Publishing.

Nene, L., Flepisi, B. T., Brand, S. J., Basson, C., & Balmith, M. (2024). Evolution of drug development and regulatory affairs: the demonstrated power of artificial intelligence. *Clinical therapeutics*, 46(8), e6-e14. <https://doi.org/10.1016/j.clinthera.2024.05.012>

Niazi, S. K. (2025). Regulatory Perspectives for AI/ML Implementation in Pharmaceutical GMP

Environments. *Pharmaceuticals*, 18(6), 901.

Okuyelu, O., & Adaji, O. (2024). AI-driven real-time quality monitoring and process optimization for enhanced manufacturing performance. *Journal of Advances in Mathematics and Computer Science*, 39(4), 81–89.

Pahune, S., Akhtar, Z., Mandapati, V., & Siddique, K. (2025). The importance of AI data governance in large language models. In *Preprints*.

Palumbo, F. B., Rosebush, L. H., & Zeta, L. M. (2016). Navigating through a complex and inconsistent regulatory framework: Section 503B of the federal food drug and cosmetic act Outsourcing Facilities engaged in clinical investigation. *Therapeutic Innovation & Regulatory Science*, 50(3), 270–278.

Pantanowitz, L., Hanna, M., Pantanowitz, J., Lennerz, J., Henricks, W. H., Shen, P., ... & Rashidi, H. H. (2024). Regulatory aspects of artificial intelligence and machine learning. *Modern Pathology*, 37(12), 100609. <https://doi.org/10.1016/j.modpat.2024.100609>

Pasas-Farmer, S., & Jain, R. (2025). From discovery to delivery: Governance of AI in the pharmaceutical industry. *Green Analytical Chemistry*, 13, 100268. <https://doi.org/10.1016/j.greeac.2025.100268>

Patil, D. (2024). Artificial intelligence-driven predictive maintenance in manufacturing: enhancing operational efficiency, minimizing downtime, and optimizing resource utilization. *Minimizing Downtime, And Optimizing Resource Utilization* (December 11, 2024).

Pereira, A., Nakka, G., & Gupta, S. (2025). Beyond Ethylene Oxide (EtO): A comprehensive review of sustainable sterilization technologies for medical devices. *Biomedical and Therapeutics Letters*, 12(2), 1161.

Prifti, K., Morley, J., Novelli, C., & Floridi, L. (2024). Regulation by design: Features, practices, limitations, and governance implications. *Minds and Machines*, 34(2).

Rajesh, M. V., & Elumalai, K. (2025). The transformative power of artificial intelligence in pharmaceutical manufacturing: Enhancing efficiency, product quality, and safety. *Journal of Holistic Integrative Pharmacy*, 6(2), 125–135. <https://doi.org/10.1016/j.jhip.2025.03.007>

Registered Outsourcing Facilities. (2025, December 5). U.S. Food and Drug Administration; FDA. <https://www.fda.gov/drugs/human-drug-compounding/registered-outsourcing-facilities>

Schwabe, D., Becker, K., Seyferth, M., Klaß, A., & Schaeffter, T. (2024). The METRIC-framework for assessing data quality for trustworthy AI in medicine: a systematic review. *NPJ digital medicine*, 7(1), 203.

Sembiring, M. H., & Novagusda, F. N. (2023). Enhancing data security resilience in AI-Driven Digital Transformation: Exploring industry challenges and solutions through ALCOA+ principles. *Acta Informatica Medica: AIM: Journal of the Society for Medical Informatics of Bosnia & Herzegovina: Casopis Drustva Za Medicinsku Informatiku BiH*, 32(1), 65–70.

Singh, R., Paxton, M., & Auclair, J. (2025). Regulating the AI-enabled ecosystem for human therapeutics. *Communications Medicine*, 5(1), 181.

Syed, N., Anwar, A., Baig, Z., & Zeadally, S. (2025). Artificial Intelligence as a service (AIaaS) for cloud, fog and the edge: State-of-the-art practices. *ACM Computing Surveys*, 57(8), 1–36.

Tanzini, A., Ruggeri, M., Bianchi, E., Valentino, C., Vigani, B., Ferrari, F., Rossi, S., Giberti, H., & Sandri, G. (2023). Robotics and aseptic processing in view of regulatory requirements. *Pharmaceutics*, 15(6), 1581.

Tsopra, R., Fernandez, X., Luchinat, C., Alberghina, L., Lehrach, H., Vanoni, M., Dreher, F., Sezerman, O. U., Cuggia, M., de Tayrac, M., Miklasevics, E., Itu, L. M., Geanta, M., Ogilvie, L., Godey, F., Boldisor, C. N., Campillo-Gimenez, B., Cioroboiu, C., Ciudel, C. F., ... Burgun, A. (2021). A framework for validating AI in precision medicine: considerations from the European ITFoC consortium. *BMC Medical Informatics and Decision Making*, 21(1), 274.

Wah, J. N. K. (2025). Revolutionizing surgery: AI and robotics for precision, risk reduction, and innovation. *Journal of Robotic Surgery*, 19(1), 47.

Yang, W., Fu, R., Amin, M. B., & Kang, B. (2025). The impact of modern AI in metadata management. *Human-Centric Intelligent Systems*, 5(3), 323–350.

Biography of Authors

Gowtham Nakka

holds a Master's degree in Engineering from the University of Louisiana with a research focus on nanoparticles. He is currently working as a QA Validation Manager at Catalent Pharma Solutions at the Boston site.

Email: gowthamnakka@gmail.com

Sakshi Gupta

has a Master's degree in Biotechnology from Texas A&M University, College Station. She works as a Manager, Licensing at Quva Pharma, a nationally recognized firm specializing in 503B compounding.

Email: sakshiguptabio@gmail.com

Aricson Pereia

holds a Master's Degree in Engineering from the University of Louisiana at Lafayette with a specialization in Materials Science. Aricson is employed at Procept BioRobotics as a Staff Engineer.

Email: ericpereira87@gmail.com