The Biofilm formation and associated gene detection in Staphylococcus spp. isolated from urinary tract infection patients

https://doi.org/10.53730/ijhs.v9n2.15695

Authors

  • Sara Hadi Jassim University of Diyala, Diyala, Iraq
  • Zainab Rashaid Hameed University of Diyala, Diyala, Iraq
  • Raghad Hameed Khaleefa University of Diyala, Diyala, Iraq

Keywords:

Biofilm formation, Staphylococcus, Urinary Tract Infections

Abstract

Objectives: The study aimed to investigate the ability of Staphylococcus species isolated from urinary tract infection (UTI) patients to form biofilms, and to detect the presence of the biofilm regulatory genes icaA and icaD. Methods: Urine samples were collected from 100 UTI-diagnosed patients at [Baladrouz Hospital] over six months under aseptic conditions. The collected specimens were inoculated onto Mannitol Salt Agar (MSA) and Blood Agar. Biofilm formation was evaluated using the crystal violet staining method. The presence of the icaR gene was detected by polymerase chain reaction (PCR) in Staphylococcus aureus isolates obtained from urine samples of patients with inflammatory conditions. Antimicrobial susceptibility was assessed by the disc diffusion method. Results: Different Staphylococcus species exhibited varying biofilm-forming capacities, with the highest observed in S. capitis and the lowest in S. lugdunensis. All tested S. aureus strains were positive for the icaR gene. Most isolates displayed broad-spectrum antibiotic resistance, particularly among coagulase-negative Staphylococci (CoNS). Conclusion: These findings highlight the role of biofilm formation in antibiotic resistance among Staphylococcus species, especially in CoNS. Understanding these mechanisms is crucial for developing effective treatment strategies for UTIs and reducing the incidence of persistent infections.

Downloads

Download data is not yet available.

References

Abdel-Shafi, S., El-Serwy, H., El-Zawahry, Y., Zaki, M., Sitohy, B., & Sitohy, M. (2022). The Association between icaA and icaB Genes, Antibiotic Resistance and Biofilm Formation in Clinical Isolates of Staphylococci spp. Antibiotics, 11(3), 389. DOI: https://doi.org/10.3390/antibiotics11030389

Arciola, C. R., Campoccia, D., & Montanaro, L. (2002). Detection of biofilm-forming strains of Staphylococcus epidermidis and S. aureus. Expert review of molecular diagnostics, 2(5), 478-484. DOI: https://doi.org/10.1586/14737159.2.5.478

Arciola, C. R., Campoccia, D., Speziale, P., Montanaro, L., & Costerton, J. W. (2012). Biofilm formation in Staphylococcus implant infections. A review of molecular mechanisms and implications for biofilm-resistant materials. Biomaterials, 33(26), 5967-5982. https://doi.org/10.1016/j.biomaterials.2012.05.031 DOI: https://doi.org/10.1016/j.biomaterials.2012.05.031

Bowler, P., Murphy, C., & Wolcott, R. (2020). Biofilm exacerbates antibiotic resistance: Is this a current oversight in antimicrobial stewardship?. Antimicrobial Resistance & Infection Control, 9, 1-5. DOI: https://doi.org/10.1186/s13756-020-00830-6

Christensen, G. D., Simpson, W. A., Bisno, A. L., & Beachey, E. H. (1982). Adherence of slime-producing strains of Staphylococcus epidermidis to smooth surfaces. Infection and immunity, 37(1), 318-326. DOI: https://doi.org/10.1128/iai.37.1.318-326.1982

Cucarella, C., Solano, C., Valle, J., Amorena, B., Lasa, I., & Penadés, J. R. (2001). Bap, a Staphylococcus aureus surface protein involved in biofilm formation. Journal of bacteriology, 183(9), 2888-2896. DOI: https://doi.org/10.1128/JB.183.9.2888-2896.2001

Djawadi, B., Heidari, N., & Mohseni, M. (2023). UTI caused by Staphylococcus saprophyticus. In Urinary Tract Infections-New Insights. IntechOpen. DOI: https://doi.org/10.5772/intechopen.110275

Donlan, R. M., & Costerton, J. W. (2002). Biofilms: survival mechanisms of clinically relevant microorganisms. Clinical microbiology reviews, 15(2), 167-193. DOI: https://doi.org/10.1128/CMR.15.2.167-193.2002

Dziewanowska, K., Patti, J. M., Deobald, C. F., Bayles, K. W., Trumble, W. R., & Bohach, G. A. (1999). Fibronectin binding protein and host cell tyrosine kinase are required for internalization of Staphylococcus aureus by epithelial cells. Infection and immunity, 67(9), 4673-4678. DOI: https://doi.org/10.1128/IAI.67.9.4673-4678.1999

Flores-Mireles, A. L., Walker, J. N., Caparon, M., & Hultgren, S. J. (2015). Urinary tract infections: epidemiology, mechanisms of infection and treatment options. Nature reviews microbiology, 13(5), 269-284. DOI: https://doi.org/10.1038/nrmicro3432

François, P., Schrenzel, J., & Götz, F. (2023). Biology and regulation of staphylococcal biofilm. International journal of molecular sciences, 24(6), 5218. DOI: https://doi.org/10.3390/ijms24065218

Hashemzadeh, M., Dezfuli, A. A. Z., Nashibi, R., Jahangirimehr, F., & Akbarian, Z. A. (2021). Study of biofilm formation, structure and antibiotic resistance in Staphylococcus saprophyticus strains causing urinary tract infection in women in Ahvaz, Iran. New Microbes and New Infections, 39, 100831. https://doi.org/10.1016/j.nmni.2020.100831 DOI: https://doi.org/10.1016/j.nmni.2020.100831

Lawal, O. U., Barata, M., Fraqueza, M. J., Worning, P., Bartels, M. D., Goncalves, L., ... & Miragaia, M. (2021). Staphylococcus saprophyticus from clinical and environmental origins have distinct biofilm composition. Frontiers in microbiology, 12, 663768. DOI: https://doi.org/10.3389/fmicb.2021.663768

Lewis, K. (2005). Persister cells and the riddle of biofilm survival. Biochemistry (Moscow), 70, 267-274. DOI: https://doi.org/10.1007/s10541-005-0111-6

Lila, A. S. A., Rajab, A. A., Abdallah, M. H., Rizvi, S. M. D., Moin, A., Khafagy, E. S., ... & Hegazy, W. A. (2023). Biofilm lifestyle in recurrent urinary tract infections. Life, 13(1), 148. DOI: https://doi.org/10.3390/life13010148

Morales-Laverde, L., Echeverz, M., Trobos, M., Solano, C., & Lasa, I. (2022). Experimental polymorphism survey in intergenic regions of the icaADBCR locus in Staphylococcus aureus isolates from periprosthetic joint infections. Microorganisms, 10(3), 600. DOI: https://doi.org/10.3390/microorganisms10030600

Nourbakhsh, F., Nasrollahzadeh, M. S., Tajani, A. S., Soheili, V., & Hadizadeh, F. (2022). Bacterial biofilms and their resistance mechanisms: a brief look at treatment with natural agents. Folia Microbiologica, 67(4), 535-554. DOI: https://doi.org/10.1007/s12223-022-00955-8

Oliveira, W. F., Silva, P. M. S., Silva, R. C. S., Silva, G. M. M., Machado, G., Coelho, L. C. B. B., & Correia, M. T. S. (2018). Staphylococcus aureus and Staphylococcus epidermidis infections on implants. Journal of hospital infection, 98(2), 111-117. https://doi.org/10.1016/j.jhin.2017.11.008 DOI: https://doi.org/10.1016/j.jhin.2017.11.008

O'Toole, G., Kaplan, H. B., & Kolter, R. (2000). Biofilm formation as microbial development. Annual Reviews in Microbiology, 54(1), 49-79. DOI: https://doi.org/10.1146/annurev.micro.54.1.49

Ratajczak, M., Kaminska, D., Nowak-Malczewska, D. M., Schneider, A., & Dlugaszewska, J. (2021). Relationship between antibiotic resistance, biofilm formation, genes coding virulence factors and source of origin of Pseudomonas aeruginosa clinical strains. Annals of Agricultural and Environmental Medicine, 28(2). DOI: https://doi.org/10.26444/aaem/122682

Stamm, W. E., & Norrby, S. R. (2001). Urinary tract infections: disease panorama and challenges. The Journal of infectious diseases, 183(Supplement_1), S1-S4. DOI: https://doi.org/10.1086/318850

Zhao, F., Maren, N. A., Kosentka, P. Z., Liao, Y. Y., Lu, H., Duduit, J. R., ... & Liu, W. (2021). An optimized protocol for stepwise optimization of real-time RT-PCR analysis. Horticulture Research, 8. DOI: https://doi.org/10.1038/s41438-021-00616-w

Published

22-06-2025

How to Cite

Jassim, S. H., Hameed, Z. R., & Khaleefa, R. H. (2025). The Biofilm formation and associated gene detection in Staphylococcus spp. isolated from urinary tract infection patients. International Journal of Health Sciences, 9(2), 731–739. https://doi.org/10.53730/ijhs.v9n2.15695

Issue

Section

Peer Review Articles